Skip to main content

Advertisement

Log in

New perspectives for mechanisms, ingredients, and their preparation for promoting the formation of beneficial bacterial biofilm

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Biofilm is a complex community of microorganisms with a more stable form compared to planktonic bacteria. Probiotic strains in biofilms have been found to have beneficial effects in numerous studies. The formation process and the regulatory mechanisms of biofilm were introduced. Strategies to promote biofilm growth were reviewed in categories. And the extraction and purification process of natural products in exogenous substances was also sorted out and summarized. The research found that different modes of action of the promoting biofilm molecules discussed were facilitated by interfering with the quorum sensing pathways, adhesion mechanisms, the two-component system, influencing extracellular polymers, and secondary messengers involved in various signaling pathways. The studies showed that the strength of the biofilm can be promoted by altering the adhesion surface material and nutrient sources. Probiotics and their secondary metabolites made critical impacts. Further studies found that the ingredients that can promote the formation of bacterial biofilms include hormones, inorganic ions (Mn2+, Cu2+, Fe3+), and natural extracts (inulin, fructooligosaccharides, malic acid, catechins, genistein, cranberry extract, resveratrol, propolis ethanolic extract, bioactive peptides, etc.). The method of extraction and purification prefers safe and low-harm solvents such as ethanol and water. Physical methods were also used to improve yields, such as microwaves, ultra-high pressure, column chromatography, etc. A multi-point, staggered, and all-round examination of the development of probiotic biofilms was directed. The exploration of probiotic biofilm will be a significant advancement heading in the field of probiotic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Kubota, S. Senda, H. Tokuda, H. Uchiyama, N. Nomura, Food Microbiol. (2009). https://doi.org/10.1016/j.fm.2009.04.001

    Article  PubMed  Google Scholar 

  2. O. Kareb, M. Aïder, Probiotics Antimicrob Proteins (2020). https://doi.org/10.1007/s12602-019-09555-4

    Article  PubMed  Google Scholar 

  3. G. Källenius, S.B. Svenson, H. Hultberg, R. Möllby, I. Helin, B. Cedergren, J. Winberg, Lancet (1981). https://doi.org/10.1016/S0140-6736(81)92797-5

    Article  PubMed  Google Scholar 

  4. P. Klemm, M.A. Schembri, Bacterial adhesins: function and structure. Int. J. Med. Microbiol. (2000). https://doi.org/10.1016/S1438-4221(00)80102-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. M.J. Salas-Jara, A. Ilabaca, M. Vega, A. García, Microorganisms. (2016). https://doi.org/10.3390/microorganisms4030035

    Article  PubMed  PubMed Central  Google Scholar 

  6. N. Rabin, Y. Zheng, C. Opoku-Temeng, Y. Du, E. Bonsu, H.O. Sintim, Future Med Chem. (2015). https://doi.org/10.4155/fmc.15.6

    Article  PubMed  Google Scholar 

  7. P.K. Jha, H. Dallagi, E. Richard, M. Deleplace, T. Benezech, C. Faill, Food Control (2022). https://doi.org/10.1016/j.foodcont.2021.108646

    Article  Google Scholar 

  8. I. Kolodkin-Gal, S. Cao, L. Chai, T. Böttcher, R. Kolter, J. Clardy, R. Losick, Cell (2012). https://doi.org/10.1016/j.cell.2012.02.055

    Article  PubMed  PubMed Central  Google Scholar 

  9. T. Korhonen, V. Väisänen, H. Saxén, H. Hultberg, S. Svenson, Infect. Immun. (1982). https://doi.org/10.1128/IAI.37.1.286-291.1982

    Article  PubMed  PubMed Central  Google Scholar 

  10. S. Fulaz, S. Vitale, L. Quinn, E. Casey, Trends Microbiol. (2019). https://doi.org/10.1016/j.tim.2019.07.004

    Article  PubMed  Google Scholar 

  11. H.L. Hamilton, N.M. Domínguez, K.J. Schwartz, K.T. Hackett, J.P. Dillard, Mol. Microbiol. (2010). https://doi.org/10.1111/j.1365-2958.2005.04521.x

    Article  Google Scholar 

  12. M. Hage, S. Khelissa, H. Akoum, N.-E. Chihib, C. Jama, Appl. Microbiol. Biotechnol. (2022). https://doi.org/10.1007/s00253-021-11715-y

    Article  PubMed  Google Scholar 

  13. E.M. Comelli, B. Guggenheim, F. Stingele, J.R. Neeser, Eur. J. Oral Sci. (2002). https://doi.org/10.1034/j.1600-0447.2002.21216.x

    Article  PubMed  Google Scholar 

  14. Q. Liu, Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai, W. Chen, Microb Cell Fact. (2020). https://doi.org/10.1186/s12934-020-1289-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Y. Wang, Q. Gu, Res. Vet. Sci. (2010). https://doi.org/10.1016/j.rvsc.2010.03.009

    Article  PubMed  Google Scholar 

  16. K.W. Lee, Poult. Sci. (2010). https://doi.org/10.3382/ps.2009-00418

    Article  PubMed  Google Scholar 

  17. H.L. Gibbins, G.B. Proctor, G.E. Yakubov, S. Wilson, G.H. Carpenter, Oral Dis. (2014). https://doi.org/10.1111/odi.12194

    Article  PubMed  Google Scholar 

  18. S. Hoashi-Takiguchi, H. Morisaki, M. Itsumi, M. Kikuchi, H. Fukamachi, M. Kurosawa, M. Yamada, N. Suzuki, H. Kuwata, Biochem. Biophys. Rep. (2022). https://doi.org/10.1016/j.bbrep.2022.101269

    Article  PubMed  PubMed Central  Google Scholar 

  19. K. Pratap, A.C. Taki, E.B. Johnston, A.L. Lopata, S.D. Kamath, Front. Immunol. (2020). https://doi.org/10.3389/fimmu.2020.00996

    Article  PubMed  PubMed Central  Google Scholar 

  20. M.C.L. Terraf, M.S.J. Tomás, L. Rault, Y.L. Loir, S. Even, M.E.F. Nader-Macías, Arch. Microbiol. (2016). https://doi.org/10.1007/s00203-016-1225-5

    Article  Google Scholar 

  21. K.P. Rumbaugh, K. Sauer, Nat. Rev. Microbiol. (2020). https://doi.org/10.1038/s41579-020-0385-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. S. Dobretsov, M. Teplitski, V. Paul, Biofouling (2009). https://doi.org/10.1080/08927010902853516

    Article  PubMed  Google Scholar 

  23. K. Rana, S.R. Nayak, A. Bihary, A.K. Sahoo, K.C. Mohanty, S.K. Palo, D. Sahoo, S. Pati, P. Dash, Arch. Microbiol. (2021). https://doi.org/10.1007/s00203-021-02594-y

    Article  PubMed  Google Scholar 

  24. M. Juhas, L. Eberl, B. Tummler, Environ. Microbiol. (2005). https://doi.org/10.1111/j.1462-2920.2005.00769.x

    Article  PubMed  Google Scholar 

  25. A.V. Patankar, J.E. González, FEMS Microbiol. Rev. 33(4), 739–756 (2009). https://doi.org/10.1111/j.1574-6976.2009.00163.x

    Article  CAS  PubMed  Google Scholar 

  26. H. Huang, X. Shao, Y. Xie, T. Wang, X. Deng, Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-10778-w

    Article  PubMed  PubMed Central  Google Scholar 

  27. K. Duan, M.G. Surette, J. Bacteriol. (2007). https://doi.org/10.1128/JB.00043-07

    Article  PubMed  PubMed Central  Google Scholar 

  28. J.L. Smith, P.M. Fratamico, X.H. Yan, Eavesdropping by bacteria: the role of SdiA in Escherichia coli and Salmonella enterica serovar typhimurium quorum sensing. Foodborne Pathog. Dis. 8(2), 169–178 (2011). https://doi.org/10.1089/fpd.2010.0651

    Article  CAS  PubMed  Google Scholar 

  29. Y. Cao, L. Li, Y. Zhang, F. Liu, X. Xiao, X. Li, Y. Yu, Food Res. Int. (2022). https://doi.org/10.1016/j.foodres.2021.110886

    Article  PubMed  Google Scholar 

  30. M.B. Miller, B.L. Bassler, Annu. Rev. Microbiol. (2001). https://doi.org/10.1146/annurev.micro.55.1.165

    Article  PubMed  Google Scholar 

  31. T. Zollmann, G. Moiset, F. Tumulka, R. Tampe, B. Poolman, R. Abele, Proc. Natl. Acad. Sci. USA (2015). https://doi.org/10.1073/pnas.1418100112

    Article  PubMed  PubMed Central  Google Scholar 

  32. J.A. Thompson, R.A. Oliveira, A. Djukovic, C. Ubeda, K.B. Xavier, Cell Rep. (2015). https://doi.org/10.1016/j.celrep.2015.02.049

    Article  PubMed  PubMed Central  Google Scholar 

  33. N.S. Jakubovics, Mol. Oral Microbiol. (2010). https://doi.org/10.1111/j.2041-1014.2009.00563.x

    Article  PubMed  Google Scholar 

  34. Z. Sun, V. Grimm, C.U. Riedel, Trends Microbiol. (2015). https://doi.org/10.1016/j.tim.2015.04.002

    Article  PubMed  Google Scholar 

  35. Z. Sun, X. He, V.F. Brancaccio, J. Yuan, C.U. Riedel, PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0088260

    Article  PubMed  PubMed Central  Google Scholar 

  36. V. Vastano, A. Pagano, A. Fusco, G. Merola, G. Donnarumma, Adv. Exp. Med. Biol. (2015). https://doi.org/10.1007/5584_2015_5009

    Article  Google Scholar 

  37. L. Liu, R. Wu, J. Zhang, P. Li, Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.02628

    Article  PubMed  PubMed Central  Google Scholar 

  38. M.A. Rather, K. Gupta, M. Mandal, Braz. J. Microbiol. (2021). https://doi.org/10.1007/s42770-021-00624-x

    Article  PubMed  PubMed Central  Google Scholar 

  39. U. Jenal, A. Reinders, C. Lori, Nat. Rev. Microbiol. (2017). https://doi.org/10.1038/nrmicro.2016.190

    Article  PubMed  Google Scholar 

  40. U. Rmling, M.Y. Galperin, M. Gomelsky, Microbiol. Mol. Biol. Rev. (2013). https://doi.org/10.1128/MMBR.00043-12

    Article  Google Scholar 

  41. B. Raymond, J.C. Young, M. Pallett, R.G. Endres, A. Clements, G. Frankel, Trends Microbiol. (2013). https://doi.org/10.1016/j.tim.2013.06.008

    Article  PubMed  Google Scholar 

  42. U. Römling, M.Y. Galperin, M. Gomelsky, Microbiol. Mol. Biol. Rev. (2013). https://doi.org/10.1128/MMBR.00043-12

    Article  PubMed  PubMed Central  Google Scholar 

  43. L.F. Ca Stiblanco, G.W. Sundin, J. Integr. Plant Biol. (2016). https://doi.org/10.1111/jipb.12428

    Article  Google Scholar 

  44. J. Xu, J. Kim, B.J. Koestler, J.H. Choi, C.M. Waters, C. Fuqua, Mol. Microbiol. (2013). https://doi.org/10.1111/mmi.12321

    Article  PubMed  PubMed Central  Google Scholar 

  45. R. Hengge, Trends Microbiol. (2021). https://doi.org/10.1016/j.tim.2021.02.003

    Article  PubMed  Google Scholar 

  46. M.S. Byrd, I. Sadovskaya, E. Vinogradov, H. Lu, D.J. Wozniak, Mol. Microbiol. (2010). https://doi.org/10.1111/j.1365-2958.2009.06795.x

    Article  Google Scholar 

  47. K.M. Colvin, Y. Irie, C.S. Tart, R. Urbano, J.C. Whitney, C. Ryder, P.L. Howell, D.J. Wozniak, M.R. Parsek, Environ. Microbiol. (2012). https://doi.org/10.1111/j.1462-2920.2011.02657.x

    Article  PubMed  Google Scholar 

  48. L.K. Jennings, K.M. Storek, H.E. Ledvina, C. Coulon, L.S. Marmont, I. Sadovskaya, P.R. Secor, B.S. Tseng, M. Scian, A. Filloux, D.J. Wozniak, P.L. Howell, M.R. Parsek, Proc. Natl. Acad. Sci. (2015). https://doi.org/10.1073/pnas.1503058112

    Article  PubMed  PubMed Central  Google Scholar 

  49. A. Digiandomenico, P. Warrener, M. Hamilton, S. Guillard, P. Ravn, R. Minter, J. Lin, J. Exp. Med. (2012). https://doi.org/10.1084/jem.20120033

    Article  PubMed  PubMed Central  Google Scholar 

  50. V. Katarina, P. Nikola, M. Marija, T. Maja, T.V. Amarela, K. Milan, Front. Microbiol. (2017). https://doi.org/10.3389/fmicb.2017.01843

    Article  Google Scholar 

  51. C.V. Eiff, G. Peters, C. Heilmann, Lancet Infect. Dis. (2002). https://doi.org/10.1016/S1473-3099(02)00438-3

    Article  Google Scholar 

  52. C. Liu, D. Sun, J. Zhu, W. Liu, Front. Microbiol. (2019). https://doi.org/10.3389/fmicb.2018.03279

    Article  PubMed  PubMed Central  Google Scholar 

  53. T. Maeda, S. Wurgler-Murphy, H. Saito, Nature (1994). https://doi.org/10.1038/369242a0

    Article  PubMed  Google Scholar 

  54. M. Wang, Q. Guo, K. Zhu, B. Fang, Y. Yang, M. Teng, X. Li, Y. Tao, Proc. Natl. Acad. Sci. (2020). https://doi.org/10.1073/pnas.1912080117

    Article  PubMed  PubMed Central  Google Scholar 

  55. T. Watanabe, M. Igarashi, T. Okajima, E. Ishii, H. Kino, M. Hatano, R. Sawa, M. Umekita, T. Kimura, S. Okamoto, Y. Eguchi, Y. Akamatsu, R. Utsumi, Antimicrob. Agents Chemother. (2012). https://doi.org/10.1128/AAC.06467-11

    Article  PubMed  PubMed Central  Google Scholar 

  56. Y.C. Lin, C.Y. Wu, H.T. Huang, M.K. Lu, W.S. Hu, K.T. Lee, Front. Microbiol. (2021). https://doi.org/10.3389/fmicb.2021.785351

    Article  PubMed  PubMed Central  Google Scholar 

  57. D.A.C. Walma, K.M. Yamada, Development (2020). https://doi.org/10.1242/dev.175596

    Article  PubMed  PubMed Central  Google Scholar 

  58. Q. Wang, Q. Lu, Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-00767-2

    Article  PubMed  PubMed Central  Google Scholar 

  59. S. Li, X. Lou, Y. Xu, X. Teng, R. Liu, Q. Zhang, W. Wu, Y. Wang, M. Bartlam, FEBS J. (2019). https://doi.org/10.1111/febs.14995

    Article  PubMed  PubMed Central  Google Scholar 

  60. M.J. Schurr, H. Yu, J.M. Martinez-Salazar, J.C. Boucher, V. Deretic, J. Bacteriol. (1996). https://doi.org/10.1128/jb.178.16.4997-5004.1996

    Article  PubMed  PubMed Central  Google Scholar 

  61. L.F. Wood, D.E. Ohman, Mol. Microbiol. (2009). https://doi.org/10.1111/j.1365-2958.2009.06635.x

    Article  PubMed  Google Scholar 

  62. M.C. Schofield, D.Q. Rodriguez, A.A. Kidman, E.K. Cassin, L.A. Michaels, E.A. Campbell, P.A. Jorth, B.S. Tseng, Mol. Microbiol. (2021). https://doi.org/10.1111/mmi.14732

    Article  PubMed  PubMed Central  Google Scholar 

  63. N. Aoudia, A. Rieu, R. Briandet, J. Deschamps, J. Chluba, G. Jego, C. Garrido, J. Guzzo, Food Microbiol. (2016). https://doi.org/10.1016/j.fm.2015.04.009

    Article  PubMed  Google Scholar 

  64. X. Zhang, Y. Deng, D. Dong, W. Du, X. Wu, S. Tang, Sci. Technol. Food Ind. (2020). https://doi.org/10.13386/j.issn1002-0306.2020.12.014

    Article  Google Scholar 

  65. G.P. Donaldson, M.S. Ladinsky, K.B. Yu, J.G. Sanders, B.B. Yoo, W.C. Chou, M.E. Conner, A.M. Earl, R. Knight, P.J. Bjorkman, S.K. Mazmanian, Science (2018). https://doi.org/10.1126/science.aaq0926

    Article  PubMed  PubMed Central  Google Scholar 

  66. F. Dai, Y. Li, Y. Shao, C. Li, W. Zhang, Microb. Pathog. (2011). https://doi.org/10.1016/j.micpath.2020.104503

    Article  PubMed  Google Scholar 

  67. H. Kubota, S. Senda, N. Nomura, H. Tokuda, H. Uchiyama, J. Biosci. Bioeng. (2008). https://doi.org/10.1263/jbb.106.381

    Article  PubMed  Google Scholar 

  68. F.M. Carvalho, F.J.M. Mergulhão, L.C. Gomes, Antibiotics (2021). https://doi.org/10.3390/antibiotics10121525

    Article  PubMed  PubMed Central  Google Scholar 

  69. V.K. Gogineni, L.E. Morrow, J. Probiotics Heal. (2013). https://doi.org/10.4172/2329-8901.1000101

    Article  Google Scholar 

  70. B. Bielik, L. Molnár, V. Vrabec, R. Andrášiová, I.C. Maruščáková, R. Nemcová, J. Toporčák, D. Mudroňová, Acta Vet. Hung. (2021). https://doi.org/10.1556/004.2020.00057

    Article  PubMed  Google Scholar 

  71. Z. Chen, S. Schlafer, G. Göstemeyer, F. Schwendicke, Microorganisms (2020). https://doi.org/10.3390/microorganisms8091272

    Article  PubMed  PubMed Central  Google Scholar 

  72. C. Prabhurajeshwar, R.K. Chandrakanth, Biomed. J. (2017). https://doi.org/10.1016/j.bj.2017.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  73. A. Khalighi, R. Behdani, S. Kouhestani, Nutr. Health. (2016). https://doi.org/10.5772/63646

    Article  Google Scholar 

  74. Y. Gu, J. Wu, J. Tian, L. Li, B. Zhang, Y. Zhang, Y. He, ACS Omega (2020). https://doi.org/10.1021/acsomega.9b01021

    Article  PubMed  PubMed Central  Google Scholar 

  75. F.M. Carvalho, R. Teixeira-Santos, F.J.M. Mergulhão, L.C. Gomes, Antibiotics (2021). https://doi.org/10.3390/antibiotics10080966

    Article  PubMed  PubMed Central  Google Scholar 

  76. D. Jeong, D.H. Kim, K.Y. Song, K.H. Seo, J. Oral Microbiol. (2018). https://doi.org/10.1080/20002297.2018.1472985

    Article  PubMed  PubMed Central  Google Scholar 

  77. S. Kaur, P. Sharma, N. Kalia, J. Singh, S. Kaur, Front. Cell. Infect. Microbiol. (2018). https://doi.org/10.3389/fcimb.2018.00120

    Article  PubMed  PubMed Central  Google Scholar 

  78. F.M. Carvalho, R. Teixeira-Santos, F.J.M. Mergulhão, L.C. Gomes, Microorganisms (2021). https://doi.org/10.3390/microorganisms9010027

    Article  PubMed  PubMed Central  Google Scholar 

  79. S.E. Jones, J. Versalovic, BMC Microbiol. (2009). https://doi.org/10.1186/1471-2180-9-35

    Article  PubMed  PubMed Central  Google Scholar 

  80. N. Larsen, L. Thorsen, E. Nayra, K. Birgitte, S.-L. Mette, Appl. Microbiol. Biotechnol. (2014). https://doi.org/10.1007/s00253-013-5343-6

    Article  PubMed  Google Scholar 

  81. M. Shemesh, Y. Chai, J. Bacteriol. (2013). https://doi.org/10.1128/JB.00028-13

    Article  PubMed  PubMed Central  Google Scholar 

  82. S. Arnaouteli, D.A. Matoz-Fernandez, M. Porter, M. Kalamara, J. Abbott, C.E. MacPhee, F.A. Davidson, N.R. Stanley-Wall, Proc. Natl. Acad. Sci. (2019). https://doi.org/10.1073/pnas.1903982116

    Article  PubMed  PubMed Central  Google Scholar 

  83. S. Pandit, M. Fazilati, K. Gaska, A. Derouiche, T. Nypelö, I. Mijakovic, R. Kádár, Int. J. Mol. Sci. (2020). https://doi.org/10.3390/ijms21186755

    Article  PubMed  PubMed Central  Google Scholar 

  84. S.M. Rubinstein, I. Kolodkin-Gal, A. Mcloon, L. Chai, R. Kolter, R. Losick, D.A. Weitz, Mol. Microbiol. (2012). https://doi.org/10.1128/JB.01025-10

    Article  PubMed  PubMed Central  Google Scholar 

  85. Y.S. Amoah, S.K. Rajasekharan, R. Reifen, M. Shemesh, Nutrients (2021). https://doi.org/10.3390/nu13124228

    Article  PubMed  PubMed Central  Google Scholar 

  86. A. Ray Mohapatra, K. Jeevaratnam, J. Glob. Antimicrob. Resist. (2019). https://doi.org/10.1016/j.jgar.2019.02.021

    Article  PubMed  Google Scholar 

  87. A. Radaic, M.B. de Jesus, Y.L. Kapila, J. Control Release. (2020). https://doi.org/10.1016/j.jconrel.2020.02.001

    Article  PubMed  Google Scholar 

  88. N. Mao, A. Cubillos-Ruiz, D.E. Cameron, J.J. Collins, Sci. Transl. Med. (2018). https://doi.org/10.1126/scitranslmed.aao2586

    Article  PubMed  PubMed Central  Google Scholar 

  89. A. Radaic, C. Ye, B. Parks, L. Gao, R. Kuraji, E. Malone, P. Kamarajan, L. Zhan, Y.L. Kapila, J. Oral Microbiol. (2020). https://doi.org/10.1080/20002297.2020.1809302

    Article  PubMed  PubMed Central  Google Scholar 

  90. T.L. Dinh, G.R. Akhmetova, D.S. Martykanova, N.L. Rudakova, M.R. Sharipova, BioNanoSci. (2019). https://doi.org/10.1007/s12668-019-00621-3

    Article  Google Scholar 

  91. J.D. Helmann, J. Biol. Chem. (2014). https://doi.org/10.1074/jbc.R114.587071

    Article  PubMed  PubMed Central  Google Scholar 

  92. S.E. Hoover, W. Xu, W. Xiao, W.F. Burkholder, J. Bacteriol. (2010). https://doi.org/10.1128/JB.00210-10

    Article  PubMed  PubMed Central  Google Scholar 

  93. E. Mhatre, A. Troszok, R. Gallegos-Monterrosa, S. Lindstädt, T. Hölscher, O.P. Kuipers, A.T. Kovács, Microbiology (2016). https://doi.org/10.1099/mic.0.000320

    Article  PubMed  Google Scholar 

  94. N. Vasantha, E. Freese, J. Gen. Microbiol. (1979). https://doi.org/10.1099/00221287-112-2-329

    Article  PubMed  Google Scholar 

  95. W.L. Jones, M.P. Sutton, L. McKittrick, P.S. Stewart, Biofouling (2011). https://doi.org/10.1080/08927014.2011.554977

    Article  PubMed  Google Scholar 

  96. S. Grumbein, M. Opitz, O. Leileg, Metallomics (2014). https://doi.org/10.1039/c4mt00049h

    Article  PubMed  Google Scholar 

  97. M.M. Palomin, M.C. Allievi, A. Gründling, C. Sanchez-Rivas, S.M. Ruzal, Microbiology (2013). https://doi.org/10.1099/mic.0.070607-0

    Article  Google Scholar 

  98. M.D. Fernández Ramírez, J. Food Microbiol. (2015). https://doi.org/10.1016/j.ijfoodmicro.2015.04.030

    Article  Google Scholar 

  99. M.C. Collado, M.C. Allievi, A. Gründling, C. Sanchez-Rivas, S.M. Ruza, J. Food Prot. (2006). https://doi.org/10.4315/0362-028x-69.7.1675

    Article  PubMed  Google Scholar 

  100. S. Lebeer, T.L.A. Verhoeven, M.P. Vélez, J. Vanderleyden, S.C.J. De Keersmaecker, Appl. Environ. Microbiol. (2007). https://doi.org/10.1128/AEM.01393-07

    Article  PubMed  PubMed Central  Google Scholar 

  101. M. Slizova, R. Nemcova, M. Mad’ar, J. Hadryova, S. Gancarcikova, M. Popper, J. Pistl, Can. J. Microbiol. (2015). https://doi.org/10.1139/cjm-2015-0007)

    Article  PubMed  Google Scholar 

  102. S.S. Branda, Å Vik, L. Friedman, R. Kolter, Trends Microbiol. (2005). https://doi.org/10.1016/j.tim.2004.11.006

    Article  PubMed  Google Scholar 

  103. J.K. Olson, J.B. Navarro, J.M. Allen, C.J. McCulloh, L.M. Warren, Y. Wang, V.A. Varaljay, M.T. Bailey, S.D. Goodman, G.E. Besner, Am. J. Physiol. Gastrointest. Liver Physiol. (2018). https://doi.org/10.1152/ajpgi.00078.2018

    Article  PubMed  PubMed Central  Google Scholar 

  104. J.H. Cummings, G.T. Macfarlane, Br. J. Nutr. (2002). https://doi.org/10.1079/BJNBJN/2002530

    Article  PubMed  Google Scholar 

  105. J. Panichikkal, R.E. Krishnankutty, Biofouling (2020). https://doi.org/10.1080/08927014.2020.1832219

    Article  PubMed  Google Scholar 

  106. C.P. Boyacι-Gündüz, S.A. Ibrahim, O.C. Wei, C.M. Galanakis, Foods (2021). https://doi.org/10.3390/foods10030497

  107. S. Gutiérrez, A. Morán, H. Martínez-Blanco, M.A. Ferrero, L.B. Rodríguez-Aparicio, Probiotics Antimicrob. Proteins (2017). https://doi.org/10.1007/s12602-017-9259-9

    Article  PubMed  Google Scholar 

  108. J. Al Azzaz, A. Al Tarraf, A. Heumann, D. Da Silva Barreira, J. Laurent, A. Assifaoui, A. Rieu, J. Guzzo, P. Lapaquette, Int. J. Mol. Sci. (2020). https://doi.org/10.3390/ijms21155423

    Article  PubMed  PubMed Central  Google Scholar 

  109. I. Alfarrayeh, C. Fekete, Z. Gazdag, G. Papp, Saudi J. Biol. Sci. (2021). https://doi.org/10.1016/j.sjbs.2020.11.047

    Article  PubMed  Google Scholar 

  110. W.A. Robbins, L. Xun, L.Z. FitzGerald, S. Esguerra, S.M. Henning, C.L. Carpenter, Biol. Reprod. (2012). https://doi.org/10.1095/biolreprod.112.101634

    Article  PubMed  Google Scholar 

  111. T. Ding, Y. Li, Food Sci. Nutr. (2021). https://doi.org/10.1002/fsn3.2029

    Article  PubMed  PubMed Central  Google Scholar 

  112. F.-Y. Chang, C.-L. Lu, C.-Y. Chen, J.-C. Luo, J. Gastroenterol. Hepatol. (2007). https://doi.org/10.1111/j.1440-1746.2007.04895.x

    Article  PubMed  Google Scholar 

  113. Y. Yao-Zong, L. Shi-Rong, M. Delvaux, Dig. Liver Dis. (2004). https://doi.org/10.1016/j.dld.2004.07.012

    Article  PubMed  Google Scholar 

  114. F. Uddin, Metall. Mater. Trans. A (2008). https://doi.org/10.1007/s11661-008-9603-5

    Article  Google Scholar 

  115. I.C. Bourg, G. Sposito, A.C.M. Bourg, J. Colloid Interface Sci. (2007). https://doi.org/10.1016/j.jcis.2007.03.062

    Article  PubMed  Google Scholar 

  116. M.P. Mokoena, Molecules (2017). https://doi.org/10.3390/molecules22081255)

    Article  PubMed  PubMed Central  Google Scholar 

  117. C. Han, J. Song, J. Hu, H. Fu, Y. Feng, R. Mu, Z. Xing, Z. Wang, L. Wang, J. Zhang, C. Wang, L. Dong, Cell Rep. (2021). https://doi.org/10.1016/j.celrep.2021.108706

    Article  PubMed  PubMed Central  Google Scholar 

  118. D. Wu, X. Li, Y. Yu, B. Gong, X. Zhou, Biotechnol. Lett. (2021). https://doi.org/10.1007/s10529-020-03019-4

    Article  PubMed  Google Scholar 

  119. D. Wu, X. Li, Y. Yu et al., Heparin stimulates biofilm formation of Escherichia coli strain Nissle. Biotechnol. Lett. 43, 235–246 (2021). https://doi.org/10.1007/s10529-020-03019-4

    Article  CAS  PubMed  Google Scholar 

  120. M.A. Lasaro, N. Salinger, J. Zhang, Y. Wang, Z. Zhong, M. Goulian, J. Zhu, Appl. Environ. Microbiol. (2008). https://doi.org/10.1128/AEM.01144-08

    Article  PubMed  PubMed Central  Google Scholar 

  121. R.M. Selvam, G. Vinothini, S.P. Thaiyammal, S. Latha, A. Chinnathambi, D. Dhanasekaran, P. Padmanabhan, S.A. Alharbi, G. Archunan, Biofouling (2016). https://doi.org/10.1080/08927014.2015.1122759

    Article  Google Scholar 

  122. M. Cambronel, F. Nilly, O. Mesguida, A.M. Boukerb, N. Connil, Front. Microbiol. (2020). https://doi.org/10.3389/fmicb.2020.01501

    Article  PubMed  PubMed Central  Google Scholar 

  123. A.Z. Pepoyan, A.M. Manvelyan, M.H. Balayan, S. Galstyan, V.V. Tsaturyan, B. Grigoryan, M.L. Chikindas, Probiotics Antimicrob. Prot. (2020). https://doi.org/10.1007/s12602-019-09566-1

    Article  Google Scholar 

  124. M.N. Berry, D.S. Friend, J. Cell Biol. (1969). https://doi.org/10.1083/jcb.43.3.506

    Article  PubMed  PubMed Central  Google Scholar 

  125. Z. Lou, H. Wang, D. Wang, Y. Zhang, Carbohydr. Polym. (2009). https://doi.org/10.1016/j.carbpol.2009.05.029

    Article  Google Scholar 

  126. M.B. Roberfroid, Br. J. Nutr. (2005). https://doi.org/10.1079/BJN20041350

    Article  PubMed  Google Scholar 

  127. L. Fante, C.P.Z. Norena, J. Food Eng. (2012). https://doi.org/10.1016/j.jfoodeng.2011.08.024

    Article  Google Scholar 

  128. M. Castellino, M. Renna, B. Leoni, M. Calasso, V.M. Paradiso, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2020.105975

    Article  Google Scholar 

  129. L. Zhou, A. Wang, C. Li, M. Zheng, T. Zhang, Chemsuschem (2012). https://doi.org/10.1002/cssc.201100545

    Article  PubMed  Google Scholar 

  130. J. Hu, S. Qiu, Guizhou Agric. Sci. (2009). https://doi.org/10.3969/j.issn.1001-3601.2009.10.060

    Article  Google Scholar 

  131. H. Adlercreutz, Ann. Int. Med. (1997). https://doi.org/10.3109/07853899709113696

    Article  Google Scholar 

  132. J.T.C. Leite Toneli, F.E.X. Mürr, P. Martinelli, I.M.D. Fabbro, K.J. Park, J. Food Eng. (2007). https://doi.org/10.1016/j.jfoodeng.2006.07.012

    Article  Google Scholar 

  133. S. Kolida, G.R. Gibson, J. Nutr. (2007). https://doi.org/10.1093/jn/137.11.2503S

    Article  PubMed  Google Scholar 

  134. T. Mutanda, M.P. Mokoena, A.O. Olaniran, B.S. Wilhelmi, C.G. Whiteley, J. Ind. Microbiol. Biotechnol. (2014). https://doi.org/10.1007/s10295-014-1452-1

    Article  PubMed  Google Scholar 

  135. M.M. Ureta, N. Romano, E. Kakisu, A. Gomez-Zavaglia, Food Res. Int. (2019). https://doi.org/10.1016/j.foodres.2019.04.044

    Article  PubMed  Google Scholar 

  136. C. Nobre, J.A. Teixeira, L.R. Rodrigues, Nat. Biotechnol. (2011). https://doi.org/10.1016/j.nbt.2011.11.006

    Article  Google Scholar 

  137. X. Chen, D. Zhai, Q. Chen, L. Zhao, Y. Dong, Y. Li, J. Niu, Food Res. Int. (2017). https://doi.org/10.3969/j.issn.1005-6521.2017.11.024

    Article  PubMed  PubMed Central  Google Scholar 

  138. T. Cheng, B. He, Food Ferment Ind. (2019). https://doi.org/10.13995/j.cnki.11-1802/ts.021254

    Article  Google Scholar 

  139. R.L. Oliveira, M.F. da Silva, S.P. da Silva, A.C.V. de Araújo, J.V.F.L. Cavalcanti, A. Converti, T.S. Porto, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.152

    Article  PubMed  PubMed Central  Google Scholar 

  140. R. Fan, J.P. Burghardt, F. Prell, H. Zorn, P. Czermak, Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2020.117291

    Article  Google Scholar 

  141. S.S. Nadar, V.K. Rathod, World J. Microbiol. (2017). https://doi.org/10.1007/s11274-017-2322-6

    Article  Google Scholar 

  142. C. Krell, D. Seebach, Eur. J. Org. Chem. (2000). https://doi.org/10.1002/1099-0690(200004)2000:7%3c1207::AID-EJOC1207%3e3.0.CO;2-2

    Article  Google Scholar 

  143. J.M. Weiss, C.R. Downs, J. Am. Chem. Soc. (1922). https://doi.org/10.1021/ja01426a025

    Article  Google Scholar 

  144. Z. Figueiredo, L. Carvalho, Appl. Biochem. (2014). https://doi.org/10.1007/BF02921688

    Article  Google Scholar 

  145. J. Yang, C.T. Hu, A.G. Shtukenberg, Q. Yin, B. Kahr, CrystEngComm (2018). https://doi.org/10.1039/C7CE02107K

    Article  Google Scholar 

  146. K. Yamamoto, T. Tosa, K. Yamashita, I. Chibata, Appl. Microbiol. (1976). https://doi.org/10.1007/BF01385432

    Article  Google Scholar 

  147. Z. Li, J. Xiao, L. Huang, D. Xu, D. Liu, X. Sun, L. Yu, H. Wu, Carbonates Evaporites (2019). https://doi.org/10.1007/s13146-017-0416-8

    Article  Google Scholar 

  148. M. Claudine, S. Augustin, M. Christine, R. Christian, J. Liliana, Am. J. Clin. Nutr. (2004). https://doi.org/10.1093/ajcn/79.5.727

    Article  Google Scholar 

  149. H.N. Graham, Prev. Med. (1992). https://doi.org/10.1016/0091-7435(92)90041-F

    Article  PubMed  Google Scholar 

  150. J.V. Higdon, B. Frei, Crit. Rev. Food Sci. Nutr. (2010). https://doi.org/10.1080/10408690390826464

    Article  Google Scholar 

  151. D. Villanueva Bermejo, E. Ibáñez, G. Reglero, C. Turner, T. Fornari, I. Rodriguez-Meizoso, Sep. Purif. Technol. (2015). https://doi.org/10.1016/j.seppur.2015.04.037

    Article  Google Scholar 

  152. P.V. Gadkari, M. Balarman, U.S. Kadimi, J. Food Sci. Technol. (2015). https://doi.org/10.1007/s13197-013-1085-9

    Article  PubMed  PubMed Central  Google Scholar 

  153. Á.L. Santana, G.A. Macedo, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.12.091

    Article  PubMed  Google Scholar 

  154. Á.L. Santana, L.D. Queirós, J. Martínez, G.A. Macedo, Food Bioprod Process. (2019). https://doi.org/10.1016/j.fbp.2019.07.007

    Article  Google Scholar 

  155. Á. Santana, J. Zanini, G. Macedo, J. Food Process Eng. (2020). https://doi.org/10.1111/jfpe.13381

    Article  Google Scholar 

  156. A. Bradfield, M. Penney, J. Am. Chem. Soc. (1948). https://doi.org/10.1039/JR9480002249

    Article  Google Scholar 

  157. H. Wang, J. Dai, J. Zhang, Y. Lv, J. Food. Biotechnol. (2001). https://doi.org/10.3321/j.issn:1673-1689.2001.02.002

    Article  Google Scholar 

  158. S. Zhong, C. Zhou, J. Yang, Chem. World (2003). https://doi.org/10.3969/j.issn.0367-6358.2003.05.004

    Article  Google Scholar 

  159. D. Venkat Ratnam, D.D. Ankola, V. Bhardwaj, D.K. Sahana, M.N.V. Ravi Kumar, J. Control Release (2006). https://doi.org/10.1016/j.jconrel.2006.04.015

    Article  PubMed  Google Scholar 

  160. A. Lacy, Curr. Pharm. Des. (2004). https://doi.org/10.2174/1381612043382693

    Article  PubMed  Google Scholar 

  161. M.J. Messina, V. Persky, K.D.R. Setchell, S. Barnes, Nutr. Cancer (1994). https://doi.org/10.1080/01635589409514310

    Article  PubMed  Google Scholar 

  162. P. Pendleton, B.S. Chun, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.05.129

    Article  PubMed  Google Scholar 

  163. N. Ohta, G. Kuwata, H. Akahori, T. Watanabe, J. Agric. Chem. Soc. Jpn. (1979). https://doi.org/10.1080/00021369.1979.10863655

    Article  Google Scholar 

  164. H. Miao, T. Qi, H. Zhao, Y Yong Yu Huan Jing Sheng Wu Xue Bao. (2005)https://doi.org/10.3321/j.issn:1006-687X.2005.03.008

  165. Y. Zhao, R. Zhang, Nat. Prod. Res. Dev. (1991). https://doi.org/10.16333/j.1001-6880.1991.03.017

    Article  Google Scholar 

  166. K. Yang, L. Du, J. Mianyang Normal Univ. (2008). https://doi.org/10.3969/j.issn.1672-612X.2008.08.015

    Article  Google Scholar 

  167. Y. Niu, Z. Zhang, H. Li, Y. Guan, C. Peng, L. Zhang, Chin. Herb. Med. (2013)

  168. N.P. Seeram, L.S. Adams, M.L. Hardy, D. Heber, J. Agric. Food Chem. (2004). https://doi.org/10.1021/jf0352778

    Article  PubMed  Google Scholar 

  169. L. Tamkut, R. Liepuoniūt, M. Pukalskien, P.R. Venskutonis, J Supercrit Fluids. (2020). https://doi.org/10.1016/j.supflu.2020.104755

    Article  Google Scholar 

  170. L. Klavins, J. Kviesis, I. Nakurte, M. Klavins, LWT (2018). https://doi.org/10.1016/j.lwt.2018.04.021

    Article  Google Scholar 

  171. C. Gao, S. Zhao, Y. Yagiz, L. Gu, J. Food Sci. (2018). https://doi.org/10.1111/1750-3841.14142

    Article  PubMed  Google Scholar 

  172. Y. Chen, K. Chen, Food Sci. (2007). https://doi.org/10.3321/j.issn:1002-6630.2007.12.044

    Article  Google Scholar 

  173. Y. Shu, H. Zhang, P. Hu, X. Yang, L. Cui, Mod. Anim. Husbandry. (2020). https://doi.org/10.3969/j.issn.1008-3111.2020.02.006

    Article  Google Scholar 

  174. S. Jiang, R. Zhu, F. Zhang, C. Liu, X. Wu, Chin. J. New Drugs (2008). https://doi.org/10.3969/j.issn.1000-5005.2006.03.025

    Article  Google Scholar 

  175. X. Hao, Y. Dong, L. Fang, X. Yuan, J. Liang, L. Wang, Food Nutr. China (2020). https://doi.org/10.19870/j.cnki.11-3716/ts.2020.03.007

    Article  Google Scholar 

  176. Q. Kong, X. Ren, R. Hu, X. Yin, G. Jiang, Y. Pan, J. Sep. Sci. (2016). https://doi.org/10.1002/jssc.201600004

    Article  PubMed  Google Scholar 

  177. H. Lv, S. Luo, R. Tian, W. Zhang, B. Sun, Y. Cui, J. Pharm. Biomed. Anal. (2020). https://doi.org/10.1016/j.jpba.2019.112859

    Article  PubMed  Google Scholar 

  178. L. Hoellein, U. Holzgrabe, Int. J. Pharm. (2012). https://doi.org/10.1016/j.ijpharm.2012.05.017

    Article  PubMed  Google Scholar 

  179. W.J. Raum, Methods (1987). https://doi.org/10.1016/S0076-6879(87)42067-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZL, XZ: Writing—original draft. DB, WD, CW, XC: Methodology, Data curation. HW: Conceptualization, Supervision, Validation.

Corresponding author

Correspondence to Zaixiang Lou.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Zheng, X., Bede, D. et al. New perspectives for mechanisms, ingredients, and their preparation for promoting the formation of beneficial bacterial biofilm. Food Measure 17, 2386–2403 (2023). https://doi.org/10.1007/s11694-022-01777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01777-5

Keywords

Navigation