Skip to main content
Log in

A novel, sensitive and selective nanosensor based on graphene nanoribbon–cobalt ferrite nanocomposite and 1-methyl-3-butylimidazolium bromide for detection of vanillin in real food samples

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this work, The production of graphene nanoribbon (GNR)/CoFe2O4 nanocomposite is described using a simple, cost-effective, and innovative technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM) were proved that graphene nanoribbons and GNR-CoFe2O4 nanocomposite were successfully synthesized. The designed nano-sensor was employed for the determination of vanillin using a carbon paste electrode (CPE) modified with graphene nanoribbons-CoFe2O4 nanocomposite and 1-methyl-3-butylimidazolium bromide (ionic liquid (IL)). The electrochemical behavior modified electrode for vanillin detection exhibited excellent electrocatalytic activity with a high peak current. Under the optimized conditions, the calibration curve offered linearity over a wide range of 0.01–500 µM, with a limit of detection of 5.2 nM. The fabricated nanosensor was successfully utilized for determination of vanillin in commercial real food samples with an outstanding recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Teissedre, A. Waterhouse, Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J. Agric. Food Chem. 48(9), 3801–3805 (2000)

    CAS  PubMed  Google Scholar 

  2. P. Deng, Z. Xu, R. Zeng, C. Ding, Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chem. 180, 156–163 (2015)

    CAS  PubMed  Google Scholar 

  3. T.R. Silva, D. Brondani, E. Zapp, I. Cruz Vieira, Electrochemical sensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) for determination of vanillin. Electroanalysis 27(2), 465–472 (2015)

    CAS  Google Scholar 

  4. L. Jiang, Y. Ding, F. Jiang, L. Li, F. Mo, Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal. Chim. Acta 833, 22–28 (2014)

    CAS  PubMed  Google Scholar 

  5. W. Wu, L. Yang, F. Zhao, B. Zeng, A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus) – multi-walled carbon nanotubes@ polydopamine–carboxyl single-walled carbon nanotubes composite. Sens. Actuators B 239, 481–487 (2017)

    CAS  Google Scholar 

  6. A. Cifuentes, Advanced separation methods in food analysis. J. Chromatogr. A 1216(43), 7109–7358 (2009)

    CAS  PubMed  Google Scholar 

  7. T. Zabihpour, S.-A. Shahidi, H. Karimi-Maleh, A. Ghorbani-HasanSaraei, Voltammetric food analytical sensor for determining vanillin based on amplified NiFe 2 O 4 nanoparticle/ionic liquid sensor. J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00353-8

    Article  Google Scholar 

  8. D. Yang, Y. Ying, Applications of Raman spectroscopy in agricultural products and food analysis: A review. Appl. Spectrosc. Rev. 46(7), 539–560 (2011)

    Google Scholar 

  9. H. Jin, Q. Lu, X. Chen, H. Ding, H. Gao, S. Jin, The use of Raman spectroscopy in food processes: A review. Appl. Spectrosc. Rev. 51(1), 12–22 (2016)

    Google Scholar 

  10. S. Altınöz, S. Toptan, Simultaneous determination of Indigotin and Ponceau-4R in food samples by using Vierordt’s method, ratio spectra first order derivative and derivative UV spectrophotometry. J. Food Compos. Anal. 16(4), 517–530 (2003)

    Google Scholar 

  11. M. Mahboubifar, Z. Sobhani, G. Dehghanzadeh, K. Javidnia, A comparison between UV spectrophotometer and high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in food products. Food Anal. Methods 4(2), 150–154 (2011)

    Google Scholar 

  12. O.A. Adebo, S.A. Oyeyinka, J.A. Adebiyi, X. Feng, J.D. Wilkin, Y.O. Kewuyemi, A.M. Abrahams, F. Tugizimana, Application of gas chromatography–mass spectrometry (GC-MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int. J. Food Sci. Technol. 56(4), 1514–1534 (2021)

    CAS  Google Scholar 

  13. W. Yan-Wen, L. Bing-Ning, L. Ling-Ling, Research progress of analysis of mineral oil hydrocarbons using on-line high performance liquid chromatography coupled with gas chromatography. Chin. J. Anal. Chem. 49(3), 341–349 (2021)

    Google Scholar 

  14. J. Lindeberg, Capillary electrophoresis in food analysis. Food Chem. 55(1), 73–94 (1996)

    CAS  Google Scholar 

  15. S. Cheraghi, M.A. Taher, H. Karimi-Maleh, Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal. 62, 254–259 (2017)

    CAS  Google Scholar 

  16. H. Medetalibeyoğlu, M. Beytur, S. Manap, C. Karaman, F. Kardaş, O. Akyıldırım, G. Kotan, H. Yüksek, N. Atar, M.L. Yola, Molecular imprinted sensor including Au nanoparticles/polyoxometalate/two-dimensional hexagonal boron nitride nanocomposite for diazinon recognition. ECS J. Solid State Sci. Technol. 9(10), 101006 (2020)

    Google Scholar 

  17. C. Karaman, O. Karaman, B.B. Yola, İ Ulker, N. Atar, M.L. Yola, A novel electrochemical Aflatoxin B1 immunosensor based on gold nanoparticles decorated porous graphene nanoribbon and Ag nanocubes incorporated MoS2 nanosheets. New J. Chem. 45, 11222–11233 (2021)

    CAS  Google Scholar 

  18. H. Karimi-Maleh, F. Karimi, L. Fu, A.L. Sanati, M. Alizadeh, C. Karaman, Y. Orooji, Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 423, 127058 (2021)

    PubMed  Google Scholar 

  19. H. Karimi-Maleh, M.L. Yola, N. Atar, Y. Orooji, F. Karimi, P.S. Kumar, J. Rouhi, M. Baghayeri, A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite. J. Colloid Interface Sci. 592, 174–185 (2021)

    CAS  PubMed  Google Scholar 

  20. H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 184, 113252 (2021)

    CAS  PubMed  Google Scholar 

  21. G. Ziyatdinova, E. Kozlova, E. Ziganshina, H. Budnikov, Surfactant/carbon nanofibers-modified electrode for the determination of vanillin. Monatsh. Chem. 147(1), 191–200 (2016)

    CAS  Google Scholar 

  22. N.K. Swamy, K.N.S. Mohana, M.B. Hegde, A.M. Madhusudana, K. Rajitha, S.R. Nayak, Fabrication of graphene nanoribbon-based enzyme-free electrochemical sensor for the sensitive and selective analysis of rutin in tablets. J. Appl. Electrochem. 51(7), 1047–1057 (2021)

    CAS  Google Scholar 

  23. M. Fouladgar, Application of ZnO nanoparticle/ion liquid modified carbon paste electrode for determination of isoproterenol in pharmaceutical and biological samples. J. Electrochem. Soc. 163(3), B38 (2015)

    Google Scholar 

  24. Y. Orooji, P.N. Asrami, H. Beitollahi, S. Tajik, M. Alizadeh, S. Salmanpour, M. Baghayeri, J. Rouhi, A.L. Sanati, F. Karimi, An electrochemical strategy for toxic ractopamine sensing in pork samples; twofold amplified nano-based structure analytical tool. J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-00982-y

    Article  Google Scholar 

  25. S. Negahban, M. Fouladgar, G. Amiri, Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid. J. Taiwan Inst. Chem. Eng. 78, 51–55 (2017)

    CAS  Google Scholar 

  26. E. Vatandost, A. Ghorbani-HasanSaraei, F. Chekin, S.N. Raeisi, S.-A. Shahidi, Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products. Food Chem. X 6, 100085 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Sadeghi, S.-A. Shahidi, S.N. Raeisi, A. Ghorbani-HasanSaraei, F. Karimi, Electrochemical determination of vitamin B6 in water and juice samples using an electrochemical sensor amplified with NiO/CNTs and Ionic liquid. Int. J. Electrochem. Sci. 15, 10488–10498 (2020)

    Google Scholar 

  28. H. Arzaghi, B. Rahimi, B. Adel, G. Rahimi, Z. Taherian, A.L. Sanati, A.S. Dezfuli, Nanomaterials modulating stem cells behavior towards cardiovascular cell linage. Mater. Adv. (2021). https://doi.org/10.1039/D0MA00957A

    Article  Google Scholar 

  29. F. Karimi, A. Ayati, B. Tanhaei, A.L. Sanati, S. Afshar, A. Kardan, Z. Dabirifar, C. Karaman, Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. Environ. Res. 203, 111753 (2021)

    PubMed  Google Scholar 

  30. M. Al Sharabati, R. Abokwiek, A. Al-Othman, M. Tawalbeh, C. Karaman, Y. Orooji, F. Karimi, Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environ. Res. 202, 111694 (2021)

    CAS  PubMed  Google Scholar 

  31. A. Aykan, O. KARAMAN, C. KARAMAN, N. Atar, M.L. Yola, A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: A DFT analysis. Surf. Interfaces 25, 101293 (2021)

    Google Scholar 

  32. C. Karaman, O. Karaman, N. Atar, M.L. Yola, Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Phys. Chem. Chem. Phys. 23(22), 12807–12821 (2021)

    CAS  PubMed  Google Scholar 

  33. C. Karaman, E. Bayram, O. Karaman, Z. Aktaş, Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. J. Electroanal. Chem. 868, 114197 (2020)

    CAS  Google Scholar 

  34. T. Eren, N. Atar, M.L. Yola, H. Karimi-Maleh, A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem. 185, 430–436 (2015)

    CAS  PubMed  Google Scholar 

  35. A.A. Ensafi, H. Karimi-Maleh, Voltammetric determination of isoproterenol using multiwall carbon nanotubes‐ionic liquid paste electrode. Drug. Test. Anal. 3(5), 325–330 (2011)

    CAS  PubMed  Google Scholar 

  36. A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, N‐(3, 4‐Dihydroxyphenethyl)‐3, 5‐dinitrobenzamide‐Modified Multiwall Carbon Nanotubes Paste Electrode as a Novel Sensor for Simultaneous Determination of Penicillamine, Uric acid, and Tryptophan. Electroanalysis 23(6), 1478–1487 (2011)

    CAS  Google Scholar 

  37. A.L. Sanati, F. Faridbod, Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci. 12, 7997–8005 (2017)

    CAS  Google Scholar 

  38. F. Faridbod, A.L. Sanati, Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem. 15(2), 103–123 (2019)

    CAS  Google Scholar 

  39. A.L. Sanati, F. Faridbod, M.R. Ganjali, Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq. 241, 316–320 (2017)

    CAS  Google Scholar 

  40. J. Raoof, R. Ojani, H. Karimi-Maleh, Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2, 7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor. J. Appl. Electrochem. 39(8), 1169–1175 (2009)

    CAS  Google Scholar 

  41. A.A. Ensafi, M. Taei, T. Khayamian, H. Karimi-Maleh, F. Hasanpour, Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J. Solid State Electrochem. 14(8), 1415–1423 (2010)

    CAS  Google Scholar 

  42. A.A. Ensafi, E. Khoddami, B. Rezaei, H. Karimi-Maleh, p-Aminophenol–multiwall carbon nanotubes–TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Colloids Surf., B 81(1), 42–49 (2010)

    CAS  Google Scholar 

  43. B.J. Sanghavi, P.K. Kalambate, S.P. Karna, A.K. Srivastava, Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 120, 1–9 (2014)

    CAS  PubMed  Google Scholar 

  44. B.J. Sanghavi, A.K. Srivastava, Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal. Chim. Acta 706(2), 246–254 (2011)

    CAS  PubMed  Google Scholar 

  45. S. Tajik, Y. Orooji, Z. Ghazanfari, F. Karimi, H. Beitollahi, R.S. Varma, H.W. Jang, M. Shokouhimehr, Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-00955-1

    Article  Google Scholar 

  46. K.M. Cho, S.-Y. Cho, S. Chong, H.-J. Koh, D.W. Kim, J. Kim, H.-T. Jung, Edge-functionalized graphene nanoribbon chemical sensor: comparison with carbon nanotube and graphene. ACS Appl. Mater. Interfaces 10(49), 42905–42914 (2018)

    CAS  PubMed  Google Scholar 

  47. R. Sainz, M. Del Pozo, M. Vilas-Varela, J. Castro-Esteban, M.P. Corral, L. Vázquez, E. Blanco, D. Peña, J.A. Martín-Gago, G.J. Ellis, Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: determination of epinephrine. Sci. Rep. 10(1), 1–11 (2020)

    Google Scholar 

  48. D.A. Brownson, D.K. Kampouris, C.E. Banks, Graphene electrochemistry: fundamental concepts through to prominent applications. Chem. Soc. Rev. 41(21), 6944–6976 (2012)

    CAS  PubMed  Google Scholar 

  49. Z. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q. Shi, J. Chen, Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study. Phys. Rev. B 75(11), 113406 (2007)

    Google Scholar 

  50. M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Munoz-Sandoval, A.G. Cano-Márquez, J.-C. Charlier, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)

    Google Scholar 

  51. P. Dong, T. Zhang, H. Xiang, X. Xu, Y. Lv, Y. Wang, C. Lu, Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J. Mater. Chem. B 9(4), 958–968 (2021)

    CAS  PubMed  Google Scholar 

  52. L. Zhang, M. Zhang, S. You, D. Ma, J. Zhao, Z. Chen, Effect of Fe3 + on the sludge properties and microbial community structure in a lab-scale A2O process. Sci. Total Environ. 780, 146505 (2021)

    CAS  PubMed  Google Scholar 

  53. Z. Es’ haghzade, E. Pajootan, H. Bahrami, M. Arami, Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J. Taiwan Inst. Chem. Eng. 71, 91–105 (2017)

    Google Scholar 

  54. Z. Ni, X. Cao, X. Wang, S. Zhou, C. Zhang, B. Xu, Y. Ni, Facile synthesis of copper (I) oxide nanochains and the photo-thermal conversion performance of its nanofluids. Coatings 11(7), 749 (2021)

    CAS  Google Scholar 

  55. C. Karaman, Boosting effect of nitrogen and phosphorous Co-doped three-dimensional graphene architecture: Highly selective electrocatalysts for carbon dioxide electroreduction to formate. Top. Catal. (2021). https://doi.org/10.1007/s11244-021-01500-6

    Article  Google Scholar 

  56. M.M. Fard, H. Beiki, Experimental investigation of benzoic acid diffusion coefficient in γ-Al 2 O 3 nanofluids at different temperatures. Heat Mass Transf. 52(10), 2203–2211 (2016)

    Google Scholar 

  57. A. Afkhami, F. Gomar, T. Madrakian, CoFe2O4 nanoparticles modified carbon paste electrode for simultaneous detection of oxycodone and codeine in human plasma and urine. Sens. Actuators B 233, 263–271 (2016)

    CAS  Google Scholar 

  58. C. Raril, J. Manjunatha, A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode. Microchem. J. 154, 104575 (2020)

    CAS  Google Scholar 

  59. J. Peng, C. Hou, X. Hu, A graphene-based electrochemical sensor for sensitive detection of vanillin. Int. J. Electrochem. Sci. 7(2), 1724–1733 (2012)

    CAS  Google Scholar 

  60. L. Shang, F. Zhao, B. Zeng, Sensitive voltammetric determination of vanillin with an AuPd nanoparticles – graphene composite modified electrode. Food Chem. 151, 53–57 (2014)

    CAS  PubMed  Google Scholar 

  61. L. Huang, K. Hou, X. Jia, H. Pan, M. Du, Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Mater. Sci. Eng. C 38, 39–45 (2014)

    CAS  Google Scholar 

  62. M.A. Khalilzadeh, Z. Arab, High sensitive nanostructure square wave voltammetric sensor for determination of vanillin in food samples. Curr. Anal. Chem. 13(1), 81–86 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iran Sheikhshoaie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roostaee, M., Sheikhshoaie, I. A novel, sensitive and selective nanosensor based on graphene nanoribbon–cobalt ferrite nanocomposite and 1-methyl-3-butylimidazolium bromide for detection of vanillin in real food samples. Food Measure 16, 523–532 (2022). https://doi.org/10.1007/s11694-021-01180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01180-6

Keywords

Navigation