Skip to main content

Advertisement

Log in

Nutritional, phytochemical, glycaemic index, antihyperglycaemic properties and quality attribute of Wheat-ackee arils cookies for diabetic patients

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study examined the ability of ackee arils flour to serve as substitute for margarine in cookies production and the possibility of employing wheat-ackee arils cookies as functional food. Four samples of cookies were formulated, which include; the control, cookies with 30 g margarine (NAFC), cookies with 20 g margarine + 10 g ackee arils flour (AF1), cookies made with 10 g of margarine + 20 g of ackee arils flour (AF2), and cookies prepared from 30 g ackee arils flour (AF3). Wheat-ackee arils cookies were evaluated for physico-chemical properties, α-amylase and α-glucosidase inhibitory activities along with glycemic load and glycemic index. The energy values of the cookies ranged from 428.74 kcal/100 g in AF3 to 450.22 kcal/100 g in AF1, the energy values of samples were significantly (p < 0.05) lower when compared with control NAFC. The result of the cookies diameter revealed that sample AF3 have the highest mean diameter value (5.13 cm) while NAFC the control sample had the least mean value of (3.26 cm). Ackee arils cookies extract influenced the in-vitro inhibitory properties of α-amylase and α-glucosidase linked to type 2 diabetic mellitus. A combination of 20 g ackee aril and 10 g margarine showed the highest inhibitory effect of 51.35%-90.54% from 50 µg/mL- 200 µg/mL concentration for α-amylase and α-glucosidase. It may be concluded that ackee arils flour can serve as a replacement for margarine in cookies production and wheat-ackee aril cookies may be considered as a functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekué, M. R. M., Sinsin, B., Eyog-Matig, O. and Finkeldey, R. Uses, traditional management, perception of variation and preferences in ackee (Blighia sapida K.D. Koenig) fruit traits in Benin: implications for domestication and conservation. Journal of Ethnobiology and Ethnomedicine, 6(12): 1–14 (2010)

  2. S.O. Agunbiade, O.M. Ighodaro, I.A. Osinbola, Effects of maturation and stem cooking on akee apple aril nutritional and phytochemical properties. Adv. Biores. 3(1), 03–06 (2012)

    CAS  Google Scholar 

  3. Ouattara, H., Niamké B., Dally T. and Kati-Coulibaly S. Nutritional composition studies of sun dried blighia sapida (k.koenig) aril 1989, nutritional composition studies of sun dried blighia sapida (k. koenig) aril from Côte d’Ivoire. Journal of Applied Biosciences 32: 1989–1994 (2010)

  4. Singh, P., Gardner, M., Poddar, S., Choo-Kang, E., Coard, K., and Rickards, E. Toxic effects of ackee oil (Blighia sapida L.) following subacute administration to rats. West Indian Medical Journal. 41(1): 23–6 (1992)

  5. Rashford, J. Ackee poisoning and the evolutionary biology of Jamaica's ackee motif. Proceedings of the thirty second annual meeting of the Caribbean food crops society, Zamorana, Honduras, Central America, 7–13 July 1996. St Croix, US Virgin Islands: CFCS. 185–192 (1997)

  6. J. Rashford, A critique of Scott’s theory of the relationship between ackee seasonality and ackee poisoning. Trop Fruits Newsl IICA Trinidad, Newtown 32, 7–10 (1999)

    Google Scholar 

  7. K.D. Golden, O.J. Williams, Y. Bailey-Shaw, High-performance liquid chromatographic analysis of amino acids in ackee fruit with emphasis on the toxic amino acid hypoglycin A. J. Chromatogr. Sci. 40, 441–446 (2002)

    CAS  PubMed  Google Scholar 

  8. S. Storozhenko, E. Belles-Boix, E. Babiychuck, D. Hérouart, M.W. Davey, L. Slooten, M.V. Montagu, D. Inźe, S. Kushnir, γ-Gutamyl transpeptidase in transgenic tobacco plant. Cellular location, processing and biochemical properties. Plant Physiol. 128, 1109–1119 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lancashire, R. J. Jamaican Ackee http.//www.chem.uwimona.edu.jm/lectures/ackee. (2006) Html. retrieved Feb (2019)

  10. Golden, K. D. Hypoglycin: a toxic amino acid of the ackee plant. Caribbean Poison Information Network (CARPIN) first scientific conference June 3–4, (2006)

  11. O. Atolani, G.A. Olatunji, O.A. Fabiyi, Blighia sapida: The plant and its hypoglycins an overview. J. Sci. Res. XXXIX(2), 15–25 (2009)

    Google Scholar 

  12. A.A. Gbolade, Inventory of antidiabetic plants in selected districts of Lagos state, Nigeria. J. Ethnopharmacol. 121, 135–139 (2009)

    PubMed  Google Scholar 

  13. A.N. Saidu, A. Mann, C.D. Onuegbu, Phytochemical screening and hypoglycemic effect of aqueous blighia sapida root bark extract on normoglycemic albino rats. Br. J. Pharma. Res. 2(2), 89–97 (2012)

    Google Scholar 

  14. J. Booyens, C.C. Louwrens, I.E. Katzeff, The role of unnatural dietary trans and cis unsaturated fatty acids in the epidemiology of coronary artery disease. Med. Hypotheses 25, 175–182 (1988)

    CAS  PubMed  Google Scholar 

  15. American Heart Association (AHA), Standards of medical care in heart. Heart Care 36(1), S11–S66 (2000)

    Google Scholar 

  16. R. Singh, G. Singh, G.S. Chauhan, Effect of incorporation of defatted soy flour on the quality of biscuits. J. Food Sci. Technol. 33, 355–7 (1996)

    Google Scholar 

  17. A.P. Alobo, Effect of sesame seed flour on millet biscuit characteristics. Plant Foods Hum. Nutr. 56, 195–202 (2001)

    CAS  PubMed  Google Scholar 

  18. J.A. Ayo, V.A. Ayo, I. Nkama, R. Adewori, Physicochemical, invitro digestibility and organoleptic evaluation of acha-wheat biscuit supplemented with soybean flour. Niger. Food J. 5, 32–8 (2007)

    Google Scholar 

  19. A.I. Olagunju, B.O.T. Ifesan, Nutritional composition and acceptability of cookies made from wheat flour and germinated sesame (Sesamum indicum) flour blends. Br. J. Appl. Sci. Technol. 3(4), 702–713 (2013)

    Google Scholar 

  20. B.O.T. Ifesan, F. Ebosele, Chemical properties of watermelon seed and the utilization of dehulled seed in cookies production. Carpathian J. Food Sci. Technol. 9(1), 126–135 (2016)

    Google Scholar 

  21. D. Saika, S.C. Deka, Cereals: from staple food to nutraceuticals. Int. Food Res. J. 18, 21–30 (2011)

    Google Scholar 

  22. F. Ahmad, F.A. Ahmad, A.A. Azad, S. Alam, A.S. Ashraf, Nutraceuticals is the need of hour. World J. Pharm. Pharma. Sci. 2, 2516–2525 (2013)

    Google Scholar 

  23. S. Ruchi, A. Kaur, S. Thakur, K. Bhardwaj, S. Bose, Role of nutraceutical in health care: a review. Int. J. Green Pharma. 11(3), s385–s394 (2017)

    CAS  Google Scholar 

  24. O.O. Awolu, P.M. Oluwaferanmi, O.I. Fafowora, G.F. Oseyemi, Optimization of the extrusion process for the production of ready-to-eat snack from rice, cassava and kersting’s groundnut composite flour. LWT Food Sci. Technol 64, 18–24 (2015)

    CAS  Google Scholar 

  25. N. Jong-Anurakkun, M.R. Bhandari, J. Kawabata, Alpha-glucosidase inhibitors from Devil tree (Alstonia scholaris). Food Chem. 103, 1319–1323 (2007)

    CAS  Google Scholar 

  26. T. Ieyama, M.D. Gunawan-Puteri, J. Kawabata, α-Glucosidase inhibitors from the bulb of Eleutherine Americana. Food Chem. 128(2), 308–311 (2011)

    CAS  PubMed  Google Scholar 

  27. Y.M. Kim, M.H. Wang, H.I. Rhee, A novel alpha-glucosidase inhibitor from pine bark. Carbohyd. Res. 339(3), 715–727 (2004)

    CAS  Google Scholar 

  28. M. Brown, R.P. Bates, C. McGowan, J.A. Cornell, Influence of fruit maturity on the hypoglycin A level in ackee (Blighia sapida). J. Food Saf. 12(2), 167–177 (1992)

    CAS  Google Scholar 

  29. AOAC. Association of Official Analytical Chemist. official methods of analysis of the analytical chemist international, 18th ed. Gathersburg, MD USA (2012)

  30. P. Tiwari, B. Kumar, M. Kaur, Kaur G, Kaur H: Phytochemical screening and extraction: a Review. Internationale Pharmaceutica Sciencia 1, 98–106 (2011)

    Google Scholar 

  31. S.S. Gowri, K. Vasantha, Phytochemical screening and antibacterial activity of syzygiumcumini (L) (Myrtaceae) Leaves Extracts. Int. J. Pharm Tech Res. 2(2), 1569–1573 (2010)

    CAS  Google Scholar 

  32. Sofowora, A. Medicinal plants and traditional medicines in Africa, spectrum Book Ltd, Ibadan, Nigeria. 2- 85 (1993)

  33. J.B. Harborne, Text book of phytochemical methods (Chapman and Hall, London, 1974), pp. 49–188

    Google Scholar 

  34. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Cioalteau Reagents. Meyhods Enzymol. 299, 152–178 (1999)

    CAS  Google Scholar 

  35. B.O. Obadoni, P.O. Ochuko, Phytochemical studies and comparative efficacy of the crude extracts of some homeostatic plants in Edo and Delta states of Nigeria. Glob J Pure Appl Sci 8, 203–208 (2001)

    Google Scholar 

  36. G.N. Medoua, I.L. Mbome, T. Agbor-Egbe, C.M.F. Mbofung, Influence of fermentation on some quality characteristics of trifoliate yam (Dioscorea dumetorum) hardened tubers. Food Chem. 107(3), 1180–1186 (2007)

    Google Scholar 

  37. S. Bushra, A. Farooq, A. Muhammad, Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14, 2167–2180 (2009)

    Google Scholar 

  38. L.J. Shai, P. Masoko, M.P. Mokgotho, Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South Afr. J. Bot 76(3), 465–470 (2010)

    Google Scholar 

  39. A. Ademiluyi, G. Oboh, Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α -glucosidase) and hypertension (angiotensin 1 converting enzyme) in vitro. Exp. Toxicol. Pathol. 65(3), 305–309 (2013)

    CAS  PubMed  Google Scholar 

  40. T.M.S. Wolever, D.J.A. Jenkins, A.L. Jenkins, R.G. Josse, The glycaemic index: methodology and clinical implications. Am. J. Clin. Nutr. 54, 846–854 (1991)

    CAS  PubMed  Google Scholar 

  41. J. Salmeron, J.E. Manson, M.J. Stampfer, G.A. Colditz, A.L. Wing, W.C. Willett, Dietary fiber, glycaemic load, and risk of non-insulin-dependent diabetes mellitus in women. J. Am. Med. Assoc. 277, 472–477 (1997)

    CAS  Google Scholar 

  42. Ihekoronye, A. I and Ngoddy, P. O. Integrated food science and technology for the tropics. (2nd ed.) macmillan publishers Ltd. London (1985)

  43. IBM Corp. IBM SPSS Statistics for windows, version 23.0. Armonk, NY: IBM Corp (2013)

  44. V.M. Dossou, J.K. Agbenorhevi, S. Combey, S. Afi-Koryoe, Ackee (Blighia sapida) fruit aril: nutritional, phytochemicals and antioxidant properties. Int. J. Nutr. Food Sci. 3(6), 534–537 (2014)

    Google Scholar 

  45. B.A. Origbemisoye, B.O.T. Ifesan, Chemical composition of ‘kiaat’ (Pteropcarpus angolensis) bark and the effect of herb pastes on the quality changes in marinated cat fish during chilled storage. Food Biol. 8, 07–12 (2019)

    Google Scholar 

  46. FAO, Protein quality evaluation, Report of the joint FAO/WHO Expert consultation Bethesda, MD., USA (2007)

  47. M.O. Aremu, O. Olaofe, E.T.A. Akintayo, Comparative study on the chemical and amino acid composition of some Nigerian underutilized legume flours. Pak. J. Nutr. 5, 34–38 (2012)

    Google Scholar 

  48. M.B.F. Jemziya, T. Mahendran, Physical quality characters of cookies produced from composite blends of wheat and sweet potato flour. Ruhuna J. Sci. 8, 12–23 (2017)

    Google Scholar 

  49. Gurr, M. I. and Asp, N. G. Dietary fiber. ILSI Europe concise monograph series. Brussels, Belgium: ILSI Press. 15–19 (1994)

  50. A. Aleixandre, M. Miguel, Dietary fibre in the prevention and treatment of metabolic syndrome: a review. Crit. Rev. Food Sci. Nutr. 48(10), 905–912 (2008)

    PubMed  Google Scholar 

  51. G.I. Okafor, F.C. Ugwu, Production and evaluation of cold extruded and baked ready-to eat snacks from blends of breadfruit (Treculia africana), cashew nut (Anacardium occidentale) and coconut (Cocos nucifera). Food Sci. Qual. Manag. 23, 65–77 (2014)

    Google Scholar 

  52. C. Nishida, R. Uauy, WHO scientific update on health consequences of transfatty acids: introduction. Eur. J. Clin. Nutr. 63(2), 1–4 (2009)

    Google Scholar 

  53. FAO/Nurition, Fats and fatty acids in human nutrition: report of an expert consultation. FAO Food and Nutrition Paper 91. Rome: Food and Agriculture Organization of the United Nations (2010)

  54. L. Hooper, A. Abdelhamid, H.J. Moore, W. Douthwaite, C.M. Skeaff, C. Summerbell, DEffect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ 345, e7666 (2012)

    PubMed  PubMed Central  Google Scholar 

  55. M. Saxena, J. Saxena, R. Nema, D. Singh, A. Gupta, Phytochemistry of medicinal plants. Center for microbiology and bio-technology research and training. J. Pharmacog. Phytochem. 8192(1), 168–182 (2013)

    Google Scholar 

  56. M.C. Ojinnaka, P.I. Okolie, B.A. Idorenyin, Quality assessment of biscuits produced from wheat-aerial yam-plantain flour blends. Int. J. Food Sci. Nutr. 4(2), 97–101 (2019)

    Google Scholar 

  57. G. Oboh, B.O. Opeyemi, D.O. Mariam, A.A. Stephen, Influence of gallic acid on a -amylase and a-glucosidase inhibitory properties of acarbose. J. Food Drug Anal. 24, 627–634 (2016)

    CAS  PubMed  Google Scholar 

  58. G. Oboh, A.A. Olabiyi, A.J. Akinyemi, A.O. Ademiluyi, Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation inrat pancreas by water-extractable phytochemicals from unripe pawpaw fruit (Carica papaya). J Basic Clin Physiol Pharmacol 25, 21–34 (2014)

    PubMed  Google Scholar 

  59. Mendosa, D. The glycaemic index. Helping fight diabetes since 1995. https://www.mendosa.com/gilists.htm (2009)

  60. C.A. Ikpeme, N.C. Osuchukwu, L. Oshieel, Functional and sensory properties of wheat (Aestium triticium) and taro flour (Colocasia esculenta) composite bread. Afr. J. Food Sci. 4(5), 248–253 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babawande A. Origbemisoye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Origbemisoye, B.A., Ifesan, B.O. Nutritional, phytochemical, glycaemic index, antihyperglycaemic properties and quality attribute of Wheat-ackee arils cookies for diabetic patients. Food Measure 15, 144–154 (2021). https://doi.org/10.1007/s11694-020-00623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00623-w

Keywords

Navigation