Skip to main content
Log in

Utilization of overripe banana/plantain-maize composite flours for making doughnuts: physicochemical, functional, rheological and sensory characterization

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the possibility of using overripe banana and plantain mixed with maize to develop composite flours for making doughnuts. The fresh pulp of banana or plantain at maturity stage 7 (appearance of black spots on the surfaces of their peels) was substituted by maize flour at levels of 5, 10, 15, 20, 25, 30 and 35% for composite flours production. The sensory properties of flours were evaluated to prepare doughnuts. Banana or plantain fresh pulps compared with maize flour showed significant (p < 0.05) differences in the crude contents of ash (1.03 ± 0.21% to 5.07 ± 0.15%), fiber (0.75 ± 0.22% to 4.71 ± 1.53%), sugars (9.53 ± 0.31% to 77.92 ± 3.14%), starch (1.37 ± 0.11% to 85.64 ± 1.88%), proteins (2.71 ± 0.11% to 4.23 ± 0.25%) and fat (0.15 ± 0.10% to 1.15 ± 0.21%). Banana-maize mixtures at higher levels (25–35%) of maize flour incorporation produced flours with higher water (WAC) and oil (OAC) absorption capacities and a higher water solubility index (WSI). While plantain-maize mixtures were associated with flours of higher peak viscosity, final viscosity, setback and breakdown indexes during the heating time; meanwhile the pasting temperature was higher in banana-maize flours. It was observed that there was no significant difference (p > 0.05) in the overall acceptability (7.46 ± 1.26 to 8.14 ± 1.21) of banana and plantain doughnuts in 35% incorporation of maize. Furthermore, the results revealed that more than 33% of the panelist greatly like the doughnuts made from composite flours. Technically, organoleptically acceptable doughnuts were formulated from banana-maize and plantain-maize composite flours using 65:35 (w/w) ratio of banana:maize and plantain:maize mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations (FAO), Crops (FAOSTAT ProdSTAT, 2008). http://faostat.fao.org/site/567/default.aspx

  2. Food and Agriculture Organization of the United Nations (FAO), Production, commodity by country (FAOSTAT ProdSTAT, 2011). http://faostat.fao.org/site/339/default.aspx

  3. M.J. Bime, V.C. Simo, N.L. Asi, Asian J. Agric. Food Sci. 5(3), 74–79 (2017)

    Google Scholar 

  4. T.A. Adeniji, I.S. Barimalaa, S.C. Achinewhu, Glob. J. Pure Appl. Sci. 12, 41–43 (2006)

    Google Scholar 

  5. International Institute of Tropical Agriculture (IITA), Improving plantain and banana based project 2. Annual Report (IITA, Ibadan, 2000), p. 60

  6. National Institute of Statistics (NIS), Statistical Yearbook (INS, North-west region, Cameroon, 2014), p. 263

  7. T.G. Sanghvi, P.W.J. Harvey, E. Wainwright, Food Nutr. Bull. 31(2), 100–107 (2010)

    Google Scholar 

  8. S. Sharrock, C. Lusty, Nutritive value of banana, in INIPAB Annual Report (Montpellier, 2000), pp. 28–31

  9. R.M.O. Kayode, A.T. Ajiboye, A.A. Babayeju, B.I. Kayode, C.O. Oladoye, K.T. Adu, Int. J. Biotechnol. 2(4), 68–82 (2013)

    Google Scholar 

  10. K.R. Nganzoua, B. Camara, E. Dick, Sci. Nat. 7(2), 155–163 (2010)

    Google Scholar 

  11. A.O. Olorunda, Acta Hortic. 540, 517–527 (2000)

    Google Scholar 

  12. Food and Agriculture Organization of the United Nations (FAO), Food Loss Assessments: Causes and Solutions. Kenya Case Studies in Small-Scale Agriculture and Fisheries Subsectors (FAO, Rome, 2014)

    Google Scholar 

  13. C.W. Makebe, Z.S.C. Desobgo, E.J. Nso, Beverages 3(2), 1–19 (2017)

    Google Scholar 

  14. N.Y. Jiokap, M. Reynes, N. Zakhia, A.L. Raoult-Wack, F. Giroux, J. Food Eng. 55, 231–236 (2002)

    Google Scholar 

  15. J.J. Fitzpatrick, L. Ahrné, Chem. Eng. Process. 44, 209–214 (2005)

    CAS  Google Scholar 

  16. C. Ahouannou, B. Amoussou, S.A. Mahamat, G. Agbo, U.P. Tougan, M.M. Soumanou, F.P. Tchobo, Int. J. Adv. Res. 3(10), 1383–1394 (2015)

    CAS  Google Scholar 

  17. J.A. Ngalani, J. Crouzet, Cah. Agric. 4, 61–64 (1995)

    Google Scholar 

  18. J. Tchango Tchango, A. Bikoi, R. Achard, J.V. Escalant, J.A. Ngalani, Post-Harvest Operations. FAO Doc (FAO, Plantain, 1999), p. 60

    Google Scholar 

  19. H.D. Mepba, L. Eboh, S.U. Nwojigwa, Afr. J. Food Agric. Nutr. Dev. 7(1), 1–22 (2007)

    Google Scholar 

  20. C.A. Zainun, J. Trop. Agric. Food. Sci. 36(1), 61–68 (2008)

    Google Scholar 

  21. H.D. Zakpaa, E.E. Mak-Mensah, J. Adubofour, J. Agric. Biotechnol. Sustain. Dev. 2(6), 92–99 (2010)

    CAS  Google Scholar 

  22. A.K. Yao, M.D. Koffi, B.I. Zaouli, L.S. Niamke, J. Appl. Biosci. 82, 7436–7448 (2014)

    Google Scholar 

  23. A.R. Norizzah, A.R. Junaida, A.L. Maryam Afifah, Int. Food Res. J. 23(2), 694–699 (2016)

    CAS  Google Scholar 

  24. D. Mohapatra, S. Mishra, C.B. Singh, D.S. Jayas, Food Bioprocess Technol. 4(3), 327–339 (2011)

    Google Scholar 

  25. Food and Agriculture Organization of the United Nations (FAO), Roots, Tubers, Plantains, and Bananas in Human Nutrition. FAO Food and Nutrition Series (FAO, Rome, 1990), http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents

  26. R. Ndjouenkeu, C.M.F. Mbofung, F.X. Etoa, Comparative study of some techniques for transforming maize into flour in Adamaoua, in Cereals in Hot Regions. ed. by Aupelf-Uref (John Ubbey Eurotext, Paris, 1989), pp. 179–186

    Google Scholar 

  27. C.P. Kouébou, A.C. Wassouo, D.A.K. Aboubakar, C. Thé, A. Kameni, C.M.F. Mbofung, Effects of wheat flour replacement, maize cultivar and fermentation time on the characteristics of Makala, a Cameroonian fried dough product, in WECAMAN, Fifth Biennial West and Central Africa Regional. Maize Workshop (IITA-Bénin, May, 2005), pp. 3–6

  28. Association of Officials Analytical Chemist (AOAC), Officials Methods of Analysis, 30th edn. (Association of Official Analytical Chemist, Washington, DC, 2000), p. 771

    Google Scholar 

  29. E.H. Fisher, E.A. Stein, Enzymes, 2nd edn. (Academic Press, New York, NY, 1960), p. 343

    Google Scholar 

  30. C.E. Jarvis, J.R.L. Walker, J. Sci. Food Agric. 63, 53–57 (1993)

    CAS  Google Scholar 

  31. J. Chrastyl, Technical and economic improvement of the manufacturing process for sour cassava starch. Final contract report, CEE/STD2 TS2A-0225 (CIRAD, Monpellier, France, 1986), p. 49

  32. C. Gaiani, P. Boyanova, R. Hussain, I. Murrieta Pazos, M.C. Karam, J. Burgain, J. Scher, Int. Dairy J. 21, 462–469 (2011)

    Google Scholar 

  33. D.G. Medcalf, K.A. Gilles, Cereal Chem. 42, 558–568 (1965)

    CAS  Google Scholar 

  34. R.D. Phillips, M.S. Chinnan, A.L. Branch, J. Miller, K.H. McWatters, J. Food Sci. 53, 805–809 (1988)

    Google Scholar 

  35. R.A. Anderson, H.F. Conway, V.F. Pfeiffer, E.L. Griffin, Cereal Sci. 14, 372–375 (1969)

    Google Scholar 

  36. F.W. Sosulski, Cereal Chem. 39, 344–350 (1962)

    Google Scholar 

  37. M. Deli, R.M. Nguimbou, X. Aboubakar, N.Y. Njintang, J. Scher, F.C.M. Mbofung, J. Food Meas. Charact. 12(2), 1242–1252 (2018)

    Google Scholar 

  38. G. Aurore, B. Parfait, L. Fahrasmane, Trends Food Sci. Technol. 20, 78–91 (2009)

    CAS  Google Scholar 

  39. Codex standard for gari (Codex Stan 151:1989, Rev. 1:1995), Standard for gari (CD-ARS, 2012). http://www.fao.org/input/download/standards/

  40. Food and Agriculture Organization of the United Nations (FAO), The state of food and agriculture, (Food and Agriculture Organization of the United Nations, Rome, 2009). http://www.fao.org/catalog/inter-e.htm

  41. M.N. Collin, R. Dalnic, Fruits 46, 13–17 (1991)

    CAS  Google Scholar 

  42. J.A. Ngalani, J. Tchango-Tchango, Acta Hortic. 490, 571–576 (1998)

    Google Scholar 

  43. E.T. Happi, B. Wathelet, M. Paquot, Food Chem. 103, 590–600 (2007)

    Google Scholar 

  44. J.C. Favier, J. Ireland-Ripert, M. Toquec-Feinberg, in General Food Directory, ed. by I. Cnva, 2nd edn. (Tec. Doc., Lavoisier, Paris, 1996), http://www.fao.org/infoods/infoods/

  45. E.J. Frederick, Effect of sorghum flour composition and particle size on quality of gluten-free bread. A Thesis, B.S. Kansas (State University, Manhattan, Kansas, 2009), p. 123

  46. W.R. Morrison, T.P. Milligan, M.N. Azudin, J. Cereal Sci. 2(4), 257–271 (1984)

    CAS  Google Scholar 

  47. C.A. Kouamé, N.K. Kouassi, D.N. Yao, G.N. Amani, Nat. Technol. 12, 117–129 (2015)

    Google Scholar 

  48. K. Kayisu, L.F. Hood, J. Food Sci. 46, 1885–1890 (1981)

    CAS  Google Scholar 

  49. S. Pragati, I. Genitha, R. Kumar, J. Food Process Technol. 5(11), 1–6 (2014)

    Google Scholar 

  50. Food Standards Agency (FSA), McCance and Widdowson’s The Composition of Foods. Sixth Summary Edition (The Royal Society of Chemistry, Cambridge, 2002). https://www.researchgate.net/publication/237123505

  51. I.C. Iwuoha, A.F. Kalu, Food Chem. 54(1), 61–66 (1995)

    CAS  Google Scholar 

  52. J.F. Fundo, F.A. Miller, E. Garcia, J.R. Santos, C.L.M. Silva, T.R.S. Brandão, J. Food Meas. Charact. 12, 292–300 (2018)

    Google Scholar 

  53. L.R. Beuchat, Cereal Foods World 26(7), 345–349 (1981)

    Google Scholar 

  54. S.N. Moorthy, Starch-Stärke 54(12), 559–592 (2002)

    CAS  Google Scholar 

  55. D. Karuna, G. Noel, K. Dilip, Food Nutr. Bull. 17(2), 1–8 (1996)

    Google Scholar 

  56. T.A. Shittu, R.A. Aminu, E.O. Abulude, Food Hydrocoll. 23, 2254–2260 (2009)

    CAS  Google Scholar 

  57. S. Soro, G. Konan, E. Elleingand, D. N’guessan, E. Koffi, Afr. J. Food Agric. Nutr. Dev. 13(5), 8313–8339 (2013)

    Google Scholar 

  58. B.L. Karwasra, B.S. Gill, M. Kaur, H. Kaur, J. Food Meas. Charact. 12, 68–77 (2018)

    Google Scholar 

  59. J.C. Wang, J.E. Kinsella, J Food Sci. 41(2), 286–292 (1976)

    CAS  Google Scholar 

  60. S.C. Ubbor, E.T. Akobundu, Pak. J. Nutr. 8(7), 1097–1102 (2009)

    CAS  Google Scholar 

  61. M.O. Aremu, O. Olaofe, E.T. Akintayo, J. Food Technol. 5(2), 109–115 (2007)

    CAS  Google Scholar 

  62. W. Kneifel, P. Paquin, T. Abert, J.-P. Richard, J. Dairy Sci. 74, 2027–2041 (1991)

    CAS  Google Scholar 

  63. A.O. Oguntunde, Niger. Food J. 5, 102–107 (1987)

    Google Scholar 

  64. L.O. Sanni, S.B. Kosoko, A.A. Adebowale, R.J. Adeoye, Int. J. Food Prop. 7, 229–237 (2001)

    Google Scholar 

  65. C.I. Iwuoha, A.C. Anyadike, O.S. Eke, J. Food Sci. Technol. 34, 311–315 (1997)

    Google Scholar 

  66. M.M. Keregero, K. Mtebe, Plant Foods Hum. Nutr. 46, 305–312 (1994)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank with greatness the Department of Food Science and Nutrition, ENSAI-University of Ngaoundere (Cameroon) for the support in the form of infrastructural facilities made available in undertaking the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguimbou Richard Marcel.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcel, N.R., Patrick, Y., Seraphine, E. et al. Utilization of overripe banana/plantain-maize composite flours for making doughnuts: physicochemical, functional, rheological and sensory characterization. Food Measure 15, 59–70 (2021). https://doi.org/10.1007/s11694-020-00609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00609-8

Keywords

Navigation