Skip to main content
Log in

Structural properties and solute transfer relationships during sucrose and stevia osmotic dehydration of apple

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this research was determined the structural changes in plant tissue during osmotic dehydration (OD) of apple in stevia and sucrose aqueous solutions. Macro and microstructural properties at different thicknesses of the sample were determined. For the study of structural properties, samples were cut in five slices at different thicknesses (0.5, 2, 4, 7, 10 mm in z direction) from the surface to the sample center. Anhydrous real density, volume and microscopy images in sample slices were determined and its relationship with the transfer of water and solutes inside the tissue were analyzed. Anhydrous real density in food considering the solids density in the sample was determined. Volume change as a function of moisture migration in the sample was evaluated. Apple samples were immersed into sucrose (30 and 50° Brix) and stevia (3 and 6%) osmotic solutions at 30 °C and 50 °C. The results showed an increase in the anhydrous real density in the area of greater loss of moisture and greater accumulation of solutes within the food. The volume increased in the thicknesses of the center of the sample where the moisture concentration was highest. The greatest alterations of the plant cell structure in the surface of the sample were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(m\) :

Total mass of the sample (g)

\(m_{{ds}}\) :

Mass of the dry solids and water mass contained in the sample (g)

\(P_{1}\) :

Pressure before volume of gas (kg/cm2)

\(P_{2}\) :

Pressure after volume of gas (kg/cm2)

\(V_{{ds}}, \, V_{w}\) :

Volume of the dry solids and water in the sample (m3)

\(V_{p}\) :

Volume of the sample (m3)

\(V_{c}\) :

Volume of the container cell of the sample (m3)

\(V_{A}\) :

Volume of gas added (m3)

\(X_{w}\) :

Mass fraction of water (gwater/gwater + gdry solid)

\(X_{{wb}}\) :

Moisture content wet basis (gwater/gdry solid + gwater)

\(X_{{ds}}\) :

Mass fraction of the dry solid (gdry solid/gwater + gdry solid)

\(\rho\) :

Density (kg/m3)

\(\rho_{w}\) :

Water density (kg/m3)

\(\rho_{{ds}}\) :

Anhydrous real density (kg/m3)

References

  1. A. Nieto, D. Salvatori, M. Castro, S. Alzamora, J. Food Eng. 61, 269–278 (2004)

    Article  Google Scholar 

  2. C. Prinzivalli, A. Brambilla, D. Maffi, R. Lo Scalzo, D. Torreggiani, Eur. Food Res. Technol. 224, 1 (2006)

    Article  Google Scholar 

  3. L. Pereira, S. Carmello-Guerreiro, H.M. Bolini, R. Cunha, M. Hubinger, J. Sci. Food Agric. 87, 6 (2007)

    Article  Google Scholar 

  4. C.C. Ferrari, S.M. Carmello-Guerreiro, H.M. André, M. Dupas, Int. J. Food Proper. 13, 1–16 (2010)

    Article  Google Scholar 

  5. P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, A.E. Oladeji, J. Müller, J. Food Meas. Charact. 12, 1028–1037 (2018)

    Article  Google Scholar 

  6. M.N. Islam, J.N. Flink, J. Food Technol. 17, 383–403 (1982)

    Google Scholar 

  7. A. Lenart, J.M. Flink, J. Food Technol. 19, 45–63 (1984)

    Article  Google Scholar 

  8. J.M. Barat, A. Albors, A. Chiralt, P. Fito, Dry. Technol. 17, 1375–1386 (1999)

    Article  Google Scholar 

  9. A. Chiralt, N. Martinez-Navarrete, J. Martinez-Monzó, P. Talens, G. Moraga, J. Food Eng. 49, 2–3 (2001)

    Google Scholar 

  10. A. Chiralt, P. Fito, Food Sci. Technol. Int. 9, 3 (2003)

    Article  Google Scholar 

  11. D.M. Salvatori, S.M. Alzamora, Dry. Technol. 18, 269–278 (2000)

    Article  Google Scholar 

  12. A. Tortoe, J. Orchard, Food Res Inst. 28, 172–178 (2006)

    Google Scholar 

  13. V.C. Gekas, in Transport Phenomena of Foods and Biological Materials, ed. by R.P. Singh, D.R. Heldman (CRC Press, Boca Raton, 1992), p. 1992

    Google Scholar 

  14. A.L. Raoult-Wack, S. Guilbert, M. Le Maguer, G. Rios, Dry. Technol. 9, 255–260 (1991)

    Google Scholar 

  15. G. Mazzanti, J. Shi, M. Le Maguer, Engineering Food for the 21st Century (CRC Press, Boca Raton, 2002)

    Google Scholar 

  16. L. Ramallo, R. Mascheroni, Braz. Arch. Biol. Technol. 48, 5 (2005)

    Article  Google Scholar 

  17. H.T. Bui, J. Makhlouf, C. Ratti, J. Food Sci. 74, 5 (2009)

    Article  Google Scholar 

  18. S. Muñiz, L.L. Méndez, J. Rodríguez, J. Food Sci. 82, 10 (2017)

    Google Scholar 

  19. N.E. Mavroudis, V. Gekas, I. Sjöholm, J. Food Eng. 38, 101–123 (1998)

    Article  Google Scholar 

  20. ChJ Boukouvalas, M.K. Krokida, Z.B. Maroulis, D. Marinos-Kouris, Int. J. Food Proper. 9, 109–125 (2006)

    Article  Google Scholar 

  21. V. Mitrevski, V. Mijakovski, F. Popovski, Electr. J. Environ. Agric. Food Chem. 11, 4 (2012)

    Google Scholar 

  22. M.M. Mastrangelo, A.M. Rojas, M.A. Castro, L.N. Gerschenson, S.M. Alzamora, J. Food Sci. Food Agric. 80, 6 (2000)

    Google Scholar 

  23. AOAC, Official methods of analysis of AOAC International, 16 th ed., AOAC International, Washington, USA (1999).

  24. N.P. Zogzas, Z.B. Maroulis, D. Marinos-Kouris, Dry. Technol. 12, 7 (1994)

    Google Scholar 

  25. A.M. Fernandez, G. Mazzanti, M. Le Maguer, Food Bioprocess. Process. 82, C1 (2004)

    Article  Google Scholar 

  26. L. Mayor, R. Moreira, A.M. Sereno, J. Food Eng. 103, 29–37 (2011)

    Article  Google Scholar 

  27. O.P. Chauhan, P.S. Asha, P.S. Raju, A.S. Bawa, Int. J. Food Proper. 14, 38–44 (2011)

    Article  Google Scholar 

  28. I. Gallegos-Marin, L.L. Méndez-Lagunas, J. Rodríguez-Ramírez, C.E. Martínez-Sánchez, Rev. Mex. Ing. Quím. 15, 2 (2016)

    Google Scholar 

  29. A. Rotstein, A. Mujumdar (Ed.), Drying’86 New York: Hemisphere Publishing Corporation, pp. 1–11 (1986).

  30. S. Mourão, T. R. de Miranda, M. Aparecida, F. C. Menegalli, Dry. Technol. (2007).

Download references

Acknowledgements

This research was supported by the Instituto Politécnico Nacional (Project SIP20161487). The authors wish to thank to Consejo Nacional de Ciencia y Tecnología (CONACYT) for the Ph.D. Fellowship 590992. The authors thank to Ph.D. Mayahuel Ortega Aviles, from Centro de Nanociencias y Micro y Nanotecnología (CNMN-IPN) for his assistance in ESEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Leticia Méndez-Lagunas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñiz-Becerá, S., Méndez-Lagunas, L.L., Rodríguez-Ramírez, J. et al. Structural properties and solute transfer relationships during sucrose and stevia osmotic dehydration of apple. Food Measure 14, 2310–2319 (2020). https://doi.org/10.1007/s11694-020-00478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00478-1

Keywords

Navigation