Skip to main content
Log in

An electrical discrimination method for rot in fresh cut apples using Cole–Cole plots

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

We evaluated the electrical properties of cut apples with and without rot incidence. Cole–Cole plots were prepared from the frequency characteristics of the electrical impedance of sample tissues and used for the analysis of the rotten samples. The coordinates at the top of the circular arc in Cole–Cole plots of all samples showed a linear regression, and it was estimated that the coordinates were influenced by extracellular fluid resistance. The coordinates of the samples were grouped according to the absence or presence of rot. It was deduced that the decrease in the position of the coordinates was caused by metabolites produced by multiplied bacteria in extracellular fluids. We showed that the Cole–Cole plot coordinates have potential as a simple, low-cost, and quantitative marker to aid in the rapid discrimination of rot in cut apples. This approach could be developed for use in the detection of postharvest disease during fruit processing, aiding in the construction of a high-quality supply-chain, and food-safety management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Leibinger, B. Breuker, M. Hahn, K. Mendgen, Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87(11), 1103–1110 (1997)

    CAS  PubMed  Google Scholar 

  2. F. Qing, T. Shiping, Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis. 84(11), 1212–1216 (2000)

    PubMed  Google Scholar 

  3. K.M. Emery, T.J. Michailides, H. Scherm, Incidence of latent infection of immature peach fruit by Monilinia fructicola and relationship to brown rot in Georgia. Plant Dis. 84(8), 853–857 (2000)

    CAS  PubMed  Google Scholar 

  4. W.S. Conway, B. Leverentz, R.A. Saftner, W.J. Janisiewicz, C.E. Sams, E. Leblanc, Survival and growth of Listeria monocytogenes on fresh-cut apple slices and its interaction with Glomerella cingulata and Penicillium expansum. Plant Dis. 84(2), 177–181 (2000)

    PubMed  Google Scholar 

  5. I. Jan, A. Rab, M. Sajid, Influence of calcium chloride on physical characteristics and soft rot incidence on fruit of apple cultivars. J. Anim. Plant Sci. 23(5), 1353–1359 (2013)

    CAS  Google Scholar 

  6. J.M. Wells, J.E. Butterfield, Salmonella contamination associated with bacterial soft rot of fresh fruits and vegetables in the marketplace. Plant Dis. 81(8), 867–872 (1997)

    CAS  PubMed  Google Scholar 

  7. S.F. Vaughn, G.F. Spencer, B.S. Shasha, Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. J. Food Sci. 58(4), 793–796 (1993)

    CAS  Google Scholar 

  8. F. Artes, A.J. Escriche, Intermittent warming reduces chilling injury and decay of tomato fruit. J. Food Sci. 59(5), 1053–1056 (1994)

    CAS  Google Scholar 

  9. A. Ippolito, A. El Ghaouth, C.L. Wilson, M. Wisniewski, Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol. Technol. 19(3), 265–272 (2000)

    CAS  Google Scholar 

  10. W.J. Janisiewicz, L. Korsten, Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40(1), 411–441 (2002)

    CAS  PubMed  Google Scholar 

  11. L. Schena, F. Nigro, I. Pentimone, A. Ligorio, A. Ippolito, Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol. Technol. 30(3), 209–220 (2003)

    Google Scholar 

  12. J. Song, P.D. Hildebrand, L. Fan, C.F. Forney, W.E. Renderos, L. Campbell-Palmer, C. Doucette, Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. J. food Sci. 72(4), M108–M112 (2007)

    CAS  PubMed  Google Scholar 

  13. R.R. Sharma, D. Singh, R. Singh, Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control 50(3), 205–221 (2009)

    Google Scholar 

  14. J.K. Patil, R. Kumar, Advances in image processing for detection of plant diseases. J. Adv. Bioinform. Appl. Res. 2(2), 135–141 (2011)

    Google Scholar 

  15. A.Y. Khaled, S. Abd Aziz, S.K. Bejo, N.M. Nawi, I.A. Seman, D.I. Onwude, Early detection of diseases in plant tissue using spectroscopy–applications and limitations. Appl. Spectrosc. Rev. 53(1), 36–64 (2018)

    Google Scholar 

  16. Z. Li, N. Wang, G.V. Raghavan, C. Vigneault, Ripeness and rot evaluation of ‘Tommy Atkins’ mango fruit through volatiles detection. J. Food Eng. 91(2), 319–324 (2009)

    CAS  Google Scholar 

  17. H. Förster, J.E. Adaskaveg, Early brown rot infections in sweet cherry fruit are detected by Monilinia-specific DNA primers. Phytopathology 90(2), 171–178 (2000)

    PubMed  Google Scholar 

  18. U. Pliquett, Bioimpedance: a review for food processing. Food Eng. Rev. 2, 74–94 (2010)

    CAS  Google Scholar 

  19. F.D. Walker, T. Takenaka, Electric impedance of neuroglia in vitro. Exp. Neurol. 11, 277–287 (1965)

    CAS  PubMed  Google Scholar 

  20. E. Vozary, P. Laslo, G. Zsivanovits, Impedance parameter characterizing apple bruise. Ann N Y Acad. Sci. 873, 421–429 (1999)

    Google Scholar 

  21. M.I.N. Zhang, J.H.M. Willison, Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can. J. Plant Sci. 72(2), 545–553 (1992)

    Google Scholar 

  22. Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J. Food Eng. 121, 24–31 (2014)

    Google Scholar 

  23. K.S. Cole, Electric phase angle of cell membranes. J. Gen. Physiol. 15(6), 641–649 (1932)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. T. Watanabe, T. Orikasa, H. Shono, S. Koide, Y. Ando, T. Shiina, A. Tagawa, The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach. J. Food Eng. 168, 113–118 (2016)

    Google Scholar 

  25. T. Watanabe, Y. Ando, T. Orikasa, T. Shiina, K. Kohyama, Effect of short time heating on the mechanical fracture and electrical impedance properties of spinach (Spinacia oleracea L.). J. Food Eng. 194, 9–14 (2017)

    Google Scholar 

  26. T. Watanabe, Y. Ando, T. Orikasa, K. Kasai, T. Shiina, Electrical impedance estimation for apple fruit tissues during storage using Cole-Cole plots. J. Food Eng. 221, 29–34 (2018)

    Google Scholar 

  27. T. Watanabe, N. Nakamura, Y. Ando, T. Kaneta, H. Kitazawa, T. Shiina, Application and simplification of cell-based equivalent circuit model analysis of electrical impedance for assessment of drop shock bruising in Japanese pear tissues. Food Bioprocess Technol. 11(11), 2125–2129 (2018)

    CAS  Google Scholar 

  28. S. Tomita, T. Nemoto, Y. Matsuo, T. Shoji, F. Tanaka, H. Nakagawa, H. Ono, J. Kikuchi, M. Kameyama, Y. Sekiyama, A NMR-based, non-targeted multistep metabolic profiling revealed L-rhamnitol as a metabolite that characterised apples from different geographic origins. Food Chem. 174, 163–172 (2015)

    CAS  PubMed  Google Scholar 

  29. E.L. Ulrich, H. Akutsu, J.F. Doreleijers, Y. Harano, E. Ioannidis, J. Lin, M. Livny, E. Nakatani, BioMagResBank. Nucleic Acids Res. 36(suppl_1), D402–D408 (2007)

    PubMed  PubMed Central  Google Scholar 

  30. S. Tomita, K. Saito, T. Nakamura, Y. Sekiyama, J. Kikuchi, Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. PLoS ONE 12(7), e0182229 (2017)

    PubMed  PubMed Central  Google Scholar 

  31. R.I. Hayden, C.A. Moyse, F.W. Calder, D.P. Crawford, D.S. Fensom, Electrical impedance studies on potato and alfalfa tissue. J. Exp. Bot. 20(2), 177–200 (1969)

    Google Scholar 

  32. E. Borges, A. P. Matos, J. M. Cardoso, C. Correia, T. Vasconcelos, N. Gomes, Early detection and monitoring of plant diseases by Bioelectric Impedance Spectroscopy. in Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting, IEEE, pp. 1–4, (2012)

  33. Y. Ando, Y. Maeda, K. Mizutani, N. Wakatsuki, S. Hagiwara, H. Nabetani, Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. J. Food Eng. 169, 114–121 (2016)

    CAS  Google Scholar 

  34. AOAC. Salmonella in food, automated conductance methods: AOAC official method 991.38. Official Methods of Analysis of AOAC International, 16th ed., Association of Official Analytical Chemists International, Gaithersburg, MD, (1996)

  35. R. Gomez-Sjoberg, D.T. Morisette, R. Bashir, Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. J. Microelectromech. Syst. 14(4), 829–838 (2005)

    CAS  Google Scholar 

  36. L. Yang, R. Bashir, Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 26(2), 135–150 (2008)

    CAS  PubMed  Google Scholar 

  37. L. Yang, Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74(5), 1621–1629 (2008)

    CAS  PubMed  Google Scholar 

  38. A. Halder, A.K. Datta, R.M. Spanswick, Water transport in cellular tissues during thermal processing. AIChE J. 57(9), 2574–2588 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

Some parts of this study were supported by a Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Young Scientists (B) [Grant Number JP 17K15352].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Watanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Nakamura, N., Ota, N. et al. An electrical discrimination method for rot in fresh cut apples using Cole–Cole plots. Food Measure 13, 2130–2135 (2019). https://doi.org/10.1007/s11694-019-00133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00133-4

Keywords

Navigation