Skip to main content
Log in

Toward the assembly of a minimal divisome

  • Review
  • Published:
Systems and Synthetic Biology

Abstract

The construction of an irreducible minimal cell having all essential attributes of a living system is one of the biggest challenges facing synthetic biology. One ubiquitous task accomplished by any living systems is the division of the cell envelope. Hence, the assembly of an elementary, albeit sufficient, molecular machinery that supports compartment division, is a crucial step towards the realization of self-reproducing artificial cells. Looking backward to the molecular nature of possible ancestral, supposedly more rudimentary, cell division systems may help to identify a minimal divisome. In light of a possible evolutionary pathway of division mechanisms from simple lipid vesicles toward modern life, we define two approaches for recapitulating division in primitive cells: the membrane deforming protein route and the lipid biosynthesis route. Having identified possible proteins and working mechanisms participating in membrane shape alteration, we then discuss how they could be integrated into the construction framework of a programmable minimal cell relying on gene expression inside liposomes. The protein synthesis using recombinant elements (PURE) system, a reconstituted minimal gene expression system, is conceivably the most versatile synthesis platform. As a first step towards the de novo synthesis of a divisome, we showed that the N-BAR domain protein produced from its gene could assemble onto the outer surface of liposomes and sculpt the membrane into tubular structures. We finally discuss the remaining challenges for building up a self-reproducing minimal cell, in particular the coupling of the division machinery with volume expansion and genome replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7(9):642–653

    Article  CAS  PubMed  Google Scholar 

  • Ahlquist P (2006) Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 4(5):371–382

    Article  CAS  PubMed  Google Scholar 

  • Allan EJ, Hoischen C, Gumpert J (2009) Bacterial L-forms. Adv Appl Microbiol 68:1–39

    Article  CAS  PubMed  Google Scholar 

  • Almendro-Vedia VG, Monroy F, Cao FJ (2013) Mechanics of constriction during cell division: a variational approach. PLoS One 8(8):e69750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernander R, Ettema TJ (2010) FtsZ-less cell division in archaea and bacteria. Curr Opin Microbiol 13(6):747–752

    Article  CAS  PubMed  Google Scholar 

  • Bhatia VK, Madsen KL, Bolinger PY, Kunding A, Hedegård P, Gether U, Stamou D (2009) Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28(21):3303–3314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briers Y, Walde P, Schuppler M, Loessner MJ (2012) How did bacterial ancestors reproduce? Lessons from L-form cells and giant lipid vesicles: multiplication similarities between lipid vesicles and L-form bacteria. Bioessays 34(12):1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Cabre EJ, Sanchez-Gorostiaga A, Carrara P, Ropero N, Casanova M, Palacios P, Stano P, Jimenez M, Rivas G, Vicente M (2013) Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J Biol Chem 288(37):26625–26634

    Article  CAS  PubMed  Google Scholar 

  • Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 99:162–168

    Article  CAS  PubMed  Google Scholar 

  • Caspi Y, Dekker C (2014) Divided we stand: splitting synthetic cells for their proliferation. Syst Synth Biol

  • Dannhauser PN, Ungewickell EJ (2012) Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat Cell Biol 14(6):634–639

    Article  CAS  PubMed  Google Scholar 

  • Darwin CC (1859) The origins of the species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Diaz A, Ahlquist P (2012) Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Curr Opin Microbiol 15(4):519–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74(4):504–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, De Camilli P, Unger VM (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132(5):807–817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  CAS  PubMed  Google Scholar 

  • Hanczyc MM, Szostak JW (2004) Replicating vesicles as models of primitive cell growth and division. Curr Opin Chem Biol 8(6):660–664

    Article  CAS  PubMed  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302(5645):618–622

    Article  CAS  PubMed  Google Scholar 

  • Hill NS, Buske PJ, Shi Y, Levin PA (2013) A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 9(7):e1003663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Z, Gogol EP, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99(10):6761–6766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jewett MC, Forster AC (2010) Update on designing and building minimal cells. Curr Opin Biotechnol 21(5):697–703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez M, Martos A, Vicente M, Rivas G (2011) Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J Biol Chem 286(13):11236–11241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koonin EV, Mulkidjanian AY (2013) Evolution of cell division: from shear mechanics to complex molecular machineries. Cell 152(5):942–944

    Article  CAS  PubMed  Google Scholar 

  • Kurihara K, Tamura M, Shohda KI, Toyota T, Suzuki K, Sugawara T (2011) Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat Chem 3(10):775–781

    Article  CAS  PubMed  Google Scholar 

  • Kuruma Y, Stano P, Ueda T, Luisi PL (2009) A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim Biophys Acta Biomembr 1788(2):567–574

    Article  CAS  Google Scholar 

  • Kuruma Y, Suzuki T, Ono S, Yoshida M, Ueda T (2012) Functional analysis of membranous Fo-a subunit of F1Fo-ATP synthase by in vitro protein synthesis. Biochem J 442(3):631–638

    Article  CAS  PubMed  Google Scholar 

  • Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457(7231):849–853

    Article  CAS  PubMed  Google Scholar 

  • Lindas AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander RA (2008) A unique cell division machinery in the archaea. Proc Natl Acad Sci USA 105:18942–18946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu YJ, Hansen GP, Venancio-Marques A, Baigl D (2013) Cell-free preparation of functional and triggerable giant proteoliposomes. ChemBioChem 14(17):2243–2247

    Article  CAS  PubMed  Google Scholar 

  • Loakes D, Holliger P (2009) Darwinian chemistry: towards the synthesis of a simple cell. Mol BioSyst 5(7):686–694

    Article  CAS  PubMed  Google Scholar 

  • Low HH, Löwe J (2006) A bacterial dynamin-like protein. Nature 444(7120):766–769

    Article  CAS  PubMed  Google Scholar 

  • Low HH, Sachse C, Amos LA, Löwe J (2009) Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139(7):1342–1352

    Article  PubMed Central  PubMed  Google Scholar 

  • Luisi PL (2002) Toward the engineering of minimal living cells. Anat Rec 268(3):208–214

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Macia J, Solé RV (2007) Synthetic turing protocells: vesicle self-reproduction through symmetry-breaking instabilities. Philos Trans R Soc Lond B Biol Sci 362(1486):1821–1829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda YT, Nakadai T, Shin J, Uryu K, Noireaux V, Libchaber A (2012) Assembly of MreB filaments on liposome membranes: a synthetic biology approach. ACS Synth Biol 1(2):53–59

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Yutin N, Bell SD, Koonin EV (2010) Evolution of diverse cell division and vesicle formation systems in archaea. Nat Rev Microbiol 8(10):731–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mansy SS, Szostak JW (2009) Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol 74:47–54

    Article  CAS  PubMed  Google Scholar 

  • Mattila PK, Pykäläinen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176(7):953–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodeling. Nature 438:590–596

    Article  CAS  PubMed  Google Scholar 

  • Mercier R, Kawai Y, Errington J (2013) Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152(5):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morowitz HJ, Heinz B, Deamer DW (1988) The chemical logic of a minimum protocell. Orig Life Evol Biosph 18(3):281–287

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Gil R, Latorre A, Peretó J, Pilar Garcillán-Barcia M, de la Cruz F (2009) Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev 33(1):225–235

    Article  CAS  PubMed  Google Scholar 

  • Murtas G (2009) Artificial assembly of a minimal cell. Mol BioSyst 5(11):1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Murtas G (2010) Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell. Syst Synth Biol 4(2):85–93

    Article  PubMed Central  PubMed  Google Scholar 

  • Murtas G (2013) Early self-reproduction, the emergence of division mechanisms in protocells. Mol BioSyst 9(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA 101(51):17669–17674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noireaux V, Bar-Ziv R, Godefroy J, Salman H, Libchaber A (2005) Toward an artificial cell based on gene expression in vesicles. Phys Biol 2(3):P1–P8

    Article  CAS  PubMed  Google Scholar 

  • Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108(9):3473–3480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura SM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K (2003) Gene expression within cell-sized lipid vesicles. ChemBioChem 4(11):1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Nourian Z, Danelon C (2013) Linking genotype and phenotype in protein synthesizing liposomes with external supply of resources. ACS Synth Biol 2(4):186–193

    Article  CAS  PubMed  Google Scholar 

  • Nourian Z, Roelofsen W, Danelon C (2012) Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angew Chem Int Ed 51(13):3114–3118

    Article  CAS  Google Scholar 

  • Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci USA 110(27):11000–11004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320(5877):792–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28(22):3476–3484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303(5657):495–499

    Article  CAS  PubMed  Google Scholar 

  • Peterlin P, Arrigler V, Kogej K, Svetina S, Walde P (2009) Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem Phys Lipids 159(2):67–76

    CAS  PubMed  Google Scholar 

  • Saarikangas J, Zhao H, Pykäläinen A, Laurinmäki P, Mattila PK, Kinnunen PK, Butcher SJ, Lappalainen P (2009) Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD (2009) Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136:97–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma Y, Imai M (2011) Model system of self-reproducing vesicles. Phys Rev Lett 107(19):198101

    Article  PubMed  Google Scholar 

  • Samson RY, Bell SD (2009) Ancient ESCRTs and the evolution of binary fission. Trends Microbiol 17(11):507–513

    Article  CAS  PubMed  Google Scholar 

  • Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science 322(5908):1710–1713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samson RY, Obita T, Hodgson B, Shaw MK, Chong PLG, Williams RL, Bell SD (2011) Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell 41(2):186–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidli PK, Schurtenberger P, Luisi PL (1991) Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J Am Chem Soc 113(21):8127–8130

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  • Schwille P (2011) Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333(6047):1252–1254

    Article  CAS  PubMed  Google Scholar 

  • Shih YL, Huang KF, Lai HM, Liao JH, Lee CS, Chang CM, Mak HM, Hsieh CW, Lin CC (2011) The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature. PLoS One 6(6):e21425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36(3):299–304

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Kuruma Y, Kanamori T, Ueda T (2014) The PURE system for protein production. Methods Mol Biol 1118:275–284

    Article  PubMed  Google Scholar 

  • Shin J, Noireaux V (2010) Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70. J Biol Eng 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J, Bassereau P, Roux A (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci USA 109(1):173–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stahelin RV, Long F, Peter BJ, Murray D, De Camilli P, McMahon HT, Cho W (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J Biol Chem 278(31):28993–28999

    Article  CAS  PubMed  Google Scholar 

  • Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46(21):3639–3653

    Article  CAS  Google Scholar 

  • Suefuji K, Valluzzi R, RayChaudhuri D (2002) Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc Natl Acad Sci USA 99(26):16776–16781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svetina S (2009) Vesicle budding and the origin of cellular life. ChemPhysChem 10(16):2769–2776

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–390

    Article  CAS  PubMed  Google Scholar 

  • Takakura K, Toyota T, Sugawara T (2003) A novel system of self-reproducing giant vesicles. J Am Chem Soc 125(27):8134–8140

    Article  CAS  PubMed  Google Scholar 

  • Takamura H, Koyama Y, Matsuzaki S, Yamada K, Hattori T, Miyata S, Takemoto K, Tohyama M, Katayama T (2012) TRAP1 controls mitochondrial fusion/fission balance through Drp1 and Mff expression. PLoS One 7:e51912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • van Nies P, Nourian Z, Kok M, van Wijk R, Moeskops J, Westerlaken I, Poolman JM, Eelkema R, van Esch JH, Kuruma Y, Ueda T, Danelon C (2013) Unbiased tracking of the progression of mRNA and protein synthesis in bulk and inside lipid vesicles. ChemBioChem 14(15):1963–1966

    Article  PubMed  Google Scholar 

  • Walde P (2010) Building artificial cells and protocell models: experimental approaches with lipid vesicles. Bioessays 32(4):296–303

    Article  CAS  PubMed  Google Scholar 

  • Wick R, Luisi PL (1996) Enzyme-containing liposomes can endogenously produce membrane-constituting lipids. Chem Biol 3(4):277–285

    Article  CAS  PubMed  Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95(12):6854–6859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464(7290):864–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458(7235):172–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Y, Arkhipov A, Schulten K (2009) Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. Structure 17(6):882–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao H, Pykäläinen A, Lappalainen P (2011) I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr Opin Cell Biol 23(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Vadym Tkach and Prof. Dimitrios Stamou from the University of Copenhagen for providing us with the plasmid pGEX6P2. We are grateful to Ilja Westerlaken from our lab for cloning the N-BAR gene into the pRSET-B vector, to Mona Mohseni Kabir for her help with the membrane deformation assays and to Pauline van Nies for critical reading of the manuscript. This work was supported by the Netherlands Organization for Scientific Research (NWO) through a VIDI grant and an ALW Open Programma grant to C.D., and by a Natural Sciences and Engineering Research Council of Canada (NSERC) fellowship to A.S.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Danelon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourian, Z., Scott, A. & Danelon, C. Toward the assembly of a minimal divisome. Syst Synth Biol 8, 237–247 (2014). https://doi.org/10.1007/s11693-014-9150-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-014-9150-x

Keywords

Navigation