Skip to main content

Advertisement

Log in

Synthesis and character investigation of new collagen Hydrolysate/polyvinyl alcohol/hydroxyapatite Polymer-Nano-Porous Membranes: I. Experimental design optimization in thermal and structural properties

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Development of bioorganic–inorganic composites has drawn eyes to extensive attention in biomedical fields and tissue engineering. So many attempts to prepare hydroxyapatite (HA), in conjunction with various binders including polyvinyl alcohol (PVA), and collagen has performed for late 20 years. We applied a method based on the phase separation for making of polymer porous membranes. This procedure is induced through the addition of a small quantity of water (polymer-rich phase) to a solution with HA precursors (polymer-poor phase). Thermal and structural composite properties of collagen Hydrolysate (CH)–PVA/HA Polymer-Nano-Porous Membranes were analyzed by Design of experiment that was undertaken using D-optimal approach, to select the optimal combination of nano composites precursor. The resulted composite characters were investigated by Fourier transform infrared, scanning electron microscopy (SEM) and thermal gravimetric analysis. Based on the SEM images, this new method could be clearly concluded to porous CH–PVA/HA hybrid materials. Finally the hemocompatibility of nanocomposite membranes were evaluated by the hemolysis study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asran AS, Henning S, Michler GH (2010) Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer 51:868–876. doi:10.1016/j.polymer.2009.12.046

    Article  CAS  Google Scholar 

  • ASTM D792-08 (1999) Standard test methods for density and specific gravity (relative density) of plastics by displacement. Annual Book of ASTM Standards, vol 8.01, part A, American Society for Testing and Materials, West Conshohocken

  • Bandyopadhyay-Ghosh S (2008) Bone as a collagen–hydroxyapatite composite and its repair. Trends Biomater Artif Organs 22:116–124

    Google Scholar 

  • Brunel G, Brocard D, Duffort JF, Jacquet E, Justumus P, Simonet T, Benque E (2001) Bioabsorbable materials for guided bone regeneration prior to implant placement and 7-year follow-up: report of 14 cases. J Periodontol 72:257–264

    Article  PubMed  CAS  Google Scholar 

  • Caiazza S, Colangelo P, Bedini R, Formisano G, De Angelis G, Barrucci S (2000) Evaluation of guided bone regeneration in rabbit femur using collagen membranes. J Dent Implants 9:219–225

    Article  CAS  Google Scholar 

  • Cascone MG, Silvio L, Sim B, Downes S (1994) Collagen and hyaluronic acid based polymeric blends as drug delivery systems for the release of physiological concentrations of growth hormone. J Mater Sci Mater Med 5:770–774. doi:10.1007/BF00120374

    Article  CAS  Google Scholar 

  • Cascone MG, Sim B, Downes S (1995) Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials 16:569–574

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Tanaka J (2002a) FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 23:4811–4818

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Tanaka J (2002b) XPS study for the microstructure development of hydroxyapatite–collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials 23:3879–3885

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Ikoma T, Kikuchi M, Tanaka J (2001) Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. J Mater Sci Lett 20:1199–1201. doi:10.1023/A:1010914621089

    Article  CAS  Google Scholar 

  • Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite–gelatin nanocomposite. Biomaterials 24:2853–2862

    Article  PubMed  CAS  Google Scholar 

  • Chen ZF, Darvell BW, Leung VWH (2004) Hydroxyapatite solubility in simple inorganic solutions. Arch Oral Biol 49:359–367

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang Y, Du GC, Hua ZZ, Zhu Y (2007) Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzyme Microb Technol 40:1686–1691. doi:10.1016/j.enzmictec.2006.09.010

    Article  CAS  Google Scholar 

  • Chuang WY, Young TH, Yao CH, Chiu WY (1999) Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 20:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn JD, van Blitterswijk CA (1998) New developments in implant coatings: Biomimetics and tissue engineering. In: Schnettler G, Markgraf W (eds) Biomaterials in Surgery. Stuttgart, Germany, Thieme, pp 77–82

  • Degirmenbasi N, Kalyon DM, Birinci E (2006) Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloids Surf B Biointerfaces 48:42–49. doi:10.1016/j.colsurfb.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  • Doyle BB, Bendit EG, Blout ER (1975) Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 14:93957. doi:10.1002/bip.1975.360140505

    Article  Google Scholar 

  • Doyle AD, Wang FW, Matsumoto K, Yamada KM (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184:481–490

    Article  PubMed  CAS  Google Scholar 

  • Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726:87–95

    Article  PubMed  CAS  Google Scholar 

  • DuMouchel W, Bradley J (1994) A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model. Technometrics 36:37–47. doi:10.1080/00401706.1994.10485399

    Google Scholar 

  • Eslami H, Solati-Hashjin M, Tahriri M (2008) Synthesis and characterization of hydroxyapatite nanocrystals via chemical precipitation technique. Iran J Pharm Sci 4:127–134

    Google Scholar 

  • Evans LA, Macey DJ, Webb J (1992) Calcium biomineralization in the radular teeth of the chiton, Acanthopleura hirtosa. Calcif Tissue Int 51:78–82

    Article  PubMed  CAS  Google Scholar 

  • Ficai A, Andronescu E, Ghitulica C, Voicu G, Trandafir V, Manzu D, Ficai M, Pall S (2009) Colagen/hydroxyapatite interactions in composite biomaterials. Mater Plast 46:11–15

    CAS  Google Scholar 

  • Ficai A, Andronescu E, Trandafir V, Ghitulica C, Voicu G (2010a) Collagen/hydroxyapatite composite obtained by electric field orientation. Mater Lett 64:541–544. doi:10.1016/j.matlet.2009.11.070

    Article  CAS  Google Scholar 

  • Ficai A, Andronescu E, Voicu G, Ghitulica C, Ficai D (2010b) The influence of collagen support and ionic species on the morphology of collagen/hydroxyapatite composite materials. Mater Charact 61:402–407. doi:10.1016/j.matchar.2010.01.003

    Article  CAS  Google Scholar 

  • Ficai M, Andronescu E, Ficai D, Voicu G, Ficai A (2010c) Synthesis and characterization of COLL–PVA/HA hybrid materials with stratified morphology. Colloids Surf B Biointerfaces 81:614–619. doi:10.1016/j.colsurfb.2010.08.009

    Article  PubMed  CAS  Google Scholar 

  • Friess W, Lee G (1996) Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials 17:2289–2294

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht FG, Gumpertz ML (2004) Planning, construction, and statistical analysis of comparative experiments. Wiley, New Jersey, p 693

    Book  Google Scholar 

  • Girija EK, Yokogawa Y, Nagata F (2004) Apatite formation on collagen fibrils in the presence of polyacrylic acid. J Mater Sci Mater Med 15:593–599

    Article  PubMed  CAS  Google Scholar 

  • Hamadouche M, Sedel L (2000) Ceramics in orthopaedics. J Bone Joint Surg Br 82:1095–1099

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J (2003) Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res 993:111–123

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen RJ, Brown LL, Hutson TB, Fink DJ, Veis A (1983) Intermolecular interactions in collagen self-assembly as revealed by Fourier transform infrared spectroscopy. Science 220:1288–1290. doi:10.1126/science.6857249

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Batra U (2010) Preparation and bioactivity evaluation of bone like hydroxyapatite: bioglass composite. Int J Chem Biol Eng 3:24–28

    CAS  Google Scholar 

  • Kikuchi M, Suetsugu Y, Tanaka J, Itoh S, Ichinose S, Shiniyama K, Hiraoka Y, Mandai Y, Nakatani S (1999) The biomimetic synthesis and biocompatibility of self-organized hydroxyapatite/collagen composites. Bioceramics 12:393–396

    Article  CAS  Google Scholar 

  • Kikuchi M, Ikoma T, Itoh S, Matsumoto HN, Koyama Y, Takakuda K, Shinomiya K, Tanaka J (2004) Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos Sci Technol 64:819–825. doi:10.1016/j.compscitech.2003.09.002

    Article  CAS  Google Scholar 

  • Kim GM, Asran AS, Michler GH, Simon P, Kim JS (2008) Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity. Bioinspir Biomim 3:1–12

    Google Scholar 

  • Kobayashi H, Kato M, Taguchi T, Ikoma T, Miyashita H, Shimmura S, Tsubota K, Tanaka J (2004) Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Mater Sci Eng, C 24:729–735. doi:10.1016/j.msec.2004.08.038

    Article  Google Scholar 

  • Komath M, Varma HK (2003) Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull Mater Sci 26:415–422

    Article  CAS  Google Scholar 

  • Lai G, Du Z, Li G (2007) The rheological behavior of collagen dispersion/poly(vinyl alcohol) blends. Korea Aust Rheol J 19:81–88

    Google Scholar 

  • Layman DL, Ardoin RC (1998) An in vitro system for studying osteointegration of dental implants utilizing cells grown on dense hydroxyapatite disks. J Biomed Mater Res 40:282–290. doi:10.1002/(SICI)1097-4636(199805

    Article  PubMed  CAS  Google Scholar 

  • Lindemann MK (1971) Encyclopedia of polymer science and technology. In: Mark HF, Gaylord NG, Bikales NM (eds), Vinyl Alcohol Polymers, vol 14. Wiley, New York, pp 149–239

  • Liu DM, Chou HM (1994) Formation of a new bioactive glass-ceramic. J Mater Sci Mater Med 5:7–10. doi:10.1007/BF00121146

    Article  CAS  Google Scholar 

  • Liu K, Jackson M, Sowa MG, Ju H, Dixson IMC, Mantsch HH (1996) Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochim Biophys Acta 1315:73–77

    Article  Google Scholar 

  • Lowe B (1937) Experimental cookery from the chemical and physical standpoint. In: a laboratory outline (eds), gelatin, 2nd edn, Wiley, New York, pp 969–970

  • McNaught AD, Wilkinson A (1996) IUPAC (Gold Book). Blackwell Scientific Publications, Oxford, p 2257

    Google Scholar 

  • Michaels JD, Nowak JE, Mallik AK, Koczo K, Wasan DT, Papoutsakis ET (1995) Interfacial properties of cell culture media with cell-protecting additives. Biotechnol Bioeng 47:420–430

    Article  PubMed  CAS  Google Scholar 

  • Nimni ME, Cheung DT, Strates B, Kodama M, Sheikh K (1988) Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. In: Nimni ME (ed) Collagen, vol 3. CRC Press, Boca Raton, FL, pp 1–38

    Google Scholar 

  • Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487. doi:10.1007/BF00369214

    PubMed  CAS  Google Scholar 

  • Payne KJ, Veis A (1988) Fourier transform ir spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers 27:1749–1760. doi:10.1002/bip.360271105

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92:1061–1071. doi:10.1016/j.polymdegradstab.2007.02.012

    Article  CAS  Google Scholar 

  • Petit R (1999) The use of hydroxyapatite in orthopaedic surgery: a ten-year review. Eur J Orthop Surg Tr 9:71–74. doi:10.1007/BF01695730

    Article  Google Scholar 

  • Poursamar SA, Rabiee M, Samadikuchaksaraei A, Tahriri M, Karimi M, Azami M (2009) Influence of the value of the pH on the preparation of nano hydroxyapatite: poly vinyl alcohol composites. J Ceram Process Res 10:679–682

    Google Scholar 

  • Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K (2004) PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25:5885–5892

    Article  PubMed  CAS  Google Scholar 

  • Reid LM (1990) Stem cell biology, hormone/matrix synergies and liver differentiation. Curr Opin Cell Biol 2:121–130

    Article  PubMed  CAS  Google Scholar 

  • Reznnikoff CA, Loretz LJ, Pesciotta DM, Oberley TD, Ignjatovic MM (1987) Growth kinetics and differentiation in vitro of normal human uroepithelial cells on collagen gel substrates in defined medium. J Cell Physiol 131:285–301. doi:10.1002/jcp.1041310302

    Article  Google Scholar 

  • Rocha V, Ringo DL, Read DB (1985) Casein production during differentiation of mammary epithelial cells in collagen gel culture. Exp Cell Res 159:201–210

    Article  PubMed  CAS  Google Scholar 

  • Sachlos E, Gotora D, Czernuszka JT (2006) Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng 12:2479–2487

    Article  PubMed  CAS  Google Scholar 

  • Sionkowska A (2000) Modification of collagen films by ultraviolet irradiation. Polym Degrad Stabil 68:147–151. doi:10.1016/S0141-3910(99)00176-7

    Article  CAS  Google Scholar 

  • Sionkowska A, Skopiñska J, Wisniewski M (2004) Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym Degrad Stab 83:117–125. doi:10.1016/S0141-3910(03)00232-5

    Article  CAS  Google Scholar 

  • Strober W (2001) Current protocols in immunology. In: Coligan JE (ed) Current protocols in immunology, vol Appendix 3F. Wiley, London

    Google Scholar 

  • Wahl DA, Czernuszka JT (2006) Collagen–hydroxyapatite composites for hard tissue repair. Eur Cells Mater 11:43–56

    CAS  Google Scholar 

  • Wahl DA, Sachlos E, Liu CZ, Czernuszka JT (2007) Controlling the processing of collagen–hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 18:201–209

    Article  PubMed  CAS  Google Scholar 

  • Zambonin G, Grano M (1995) Biomaterials in orthopaedic surgery: effects of different hydroxyapatites and demineralized bone matrix on proliferation rate and bone matrix synthesis by human osteoblasts. Biomaterials 16:397–402

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Zhao M, Cai L, Wang ZK, Sun YF, Hu QL (2010) Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration. Chin J Polym Sci 28:555–561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks are due to Dr. Nematollah Gheibi and Dr. Asadollah Asadi for their intellectual assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Imanieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imanieh, H., Aghahosseini, H. Synthesis and character investigation of new collagen Hydrolysate/polyvinyl alcohol/hydroxyapatite Polymer-Nano-Porous Membranes: I. Experimental design optimization in thermal and structural properties. Syst Synth Biol 7, 175–184 (2013). https://doi.org/10.1007/s11693-013-9110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-013-9110-x

Keywords

Navigation