Skip to main content
Log in

Phenotypic characterization of Corynebacterium glutamicum using elementary modes towards synthesis of amino acids

  • Research Paper
  • Published:
Systems and Synthetic Biology

Abstract

Elementary flux mode (EFM) analysis is a powerful tool to represent the metabolic network structure and can be further utilized for flux analysis. The method enables characterization and quantification of feasible phenotypes in microbes. EFM analysis was employed to characterize the phenotype of Corynebacterium glutamicum to yield various amino acids. The metabolic network of C. glutamicum yielded 62 elementary modes by incorporating the accumulation of amino acids namely, lysine, alanine, valine, glutamine and glutamate. The analysis also allowed us to compute the maximum theoretical yield for the synthesis of various amino acids. These 62 elementary modes were further used to obtain optimal phenotypic space towards accumulation of biomass and lysine. The study indicated that the optimal solution space from 62 elementary modes forms a super space which incorporates various mutants including lysine producing strain of C. glutamicum. The analysis was also extended to obtain sensitivity of the network to variation in the stoichiometry of NADP in the definition of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S (2008) Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol 252(3):433–441. doi:10.1016/j.jtbi.2007.09.043

    Article  PubMed  CAS  Google Scholar 

  • Cakir T, Tacer CS, Ulgen KO (2004) Metabolic pathway analysis of enzyme-deficient human red blood cells. BioSyst 78(1–3):49–67. doi:10.1016/j.biosystems.2004.06.004

    Article  CAS  Google Scholar 

  • Carlson R, Fell D, Srienc F (2002) Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol Bioeng 79(2):121–134. doi:10.1002/bit.10305

    Article  PubMed  CAS  Google Scholar 

  • Clarke B (1988) Stoichiometric network analysis. Cell Biochem Biophys 12(1):237–253

    CAS  Google Scholar 

  • Cox SJ, Levanon SS, Sanchez A, Lin H, Peercy B, Bennett GN, San KY (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab Eng 8(1):46–57. doi:10.1016/j.ymben.2005.09.006

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T, Schuster S, Snel B, Huynen M, Bork P (1999) Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem J 343:115–124

    Article  PubMed  CAS  Google Scholar 

  • de Graaf A (2000) Metabolic flux analysis of Corynebacterium glutamicum. In: Bioreaction engineering, modelling and control. Springer, New York, pp 506–555

  • de Graaf A, Eggeling L, Sahm H (2001) Metabolic engineering for L-lysine production by Corynebacterium glutamicum. In: Metabolic engineering, pp 9–29. doi:10.1007/3-540-45300-8_2

  • Diniz SC, Voss I, Steinbuchel A (2006) Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol Bioeng 93(4):698–717. doi:10.1002/bit.20760

    Article  PubMed  CAS  Google Scholar 

  • Gayen K, Venkatesh KV (2006) Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum. BMC Bioinform 7. doi:445 10.1186/1471-2105-7-445

  • Gulik WMv, Heijnen JJ (1995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng 48(6):681–698

    Article  PubMed  Google Scholar 

  • Hollander JA (1994) Potential metabolic limitations in lysine production by Corynebacterium glutamicum as revealed by metabolic network analysis. Appl Microbiol Biotechnol 42(4):508–515

    Article  Google Scholar 

  • Hua Q, Yang C, Shimizu K (2000) Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification. J Biosci Bioeng 90(2):184–192

    PubMed  CAS  Google Scholar 

  • Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496

    Article  PubMed  CAS  Google Scholar 

  • Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21(2):64–69

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Phalakornkule C, Domach MM, Grossmann IE (2000) Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comput Chem Eng 24(2–7):711–716

    Article  CAS  Google Scholar 

  • Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276. doi:10.1016/j.ymben.2003.09.002

    Article  PubMed  CAS  Google Scholar 

  • Montgomery DC (2004) Design and analysis of experiments, 5th edn. Wiley, Singapore

    Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach, vol 1, 1st edn. Sinauer Associates Inc, Sunderland

  • Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22(8):400–405

    Article  PubMed  CAS  Google Scholar 

  • Park SM, Sinskey AJ, Stephanopoulos G (1997) Metabolic and physiological studies of Corynebacterium glutamicum mutants. Biotechnol Bioeng 55(6):864–879

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG (2006) ScrumPy: metabolic modelling with Python. In: IEE proceedings systems biology, pp 375–378. doi:10.1049/in-syb:20060010

  • Poolman MG, Fell DA, Raines CA (2003) Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur J Biochem 270(3):430–439

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG, Assmus HE, Fell DA (2004a) Applications of metabolic modelling to plant metabolism. J Exp Bot 55(400):1177–1186. doi:10.1093/jxb/erh090

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG, Venkatesh KV, Pidcock MK, Fell DA (2004b) A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol Bioeng 88(5):601–612. doi:10.1002/bit.20273

    Article  PubMed  CAS  Google Scholar 

  • Provost A, Bastin G, Agathos SN, Schneider YJ (2006) Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioprocess Biosyst Eng 29(5–6):349–366. doi:10.1007/s00449-006-0083-y

    Article  PubMed  CAS  Google Scholar 

  • Rohwer JM, Botha FK (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358(2):437–445

    Article  PubMed  CAS  Google Scholar 

  • Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using linear optimization. 1. development of mathematical formalism. J Theor Biol 154(4):421–454

    Article  PubMed  CAS  Google Scholar 

  • Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2(2):165–182

    Article  Google Scholar 

  • Schuster S, Kenanov D (2005) Adenine and adenosine salvage pathways in erythrocytes and the role of S-adenosylhomocysteine hydrolase—a theoretical study using elementary flux modes. FEBS J 272(20):5278–5290. doi:10.1111/j.1742-4658.2005.04924.x

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60. doi:10.1016/S0167-7799(98)01290-6

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotech 18(3):326–332

    Article  CAS  Google Scholar 

  • Schuster S, Hilgetag C, Woods JH, Fell DA (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 45(2):153–181. doi:10.1007/s002850200143

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Kamp A, Pachkov M (2007) Understanding the Roadmap of Metabolism by Pathway Analysis. In: Metabolomics. Methods in molecular biology. Humana Press, Iotowa, N, pp 199–226

  • Schwartz J-M, Kanehisa M (2006) Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinformatics 7(1):186

    Article  PubMed  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420(6912):190–193

    Article  PubMed  CAS  Google Scholar 

  • Trinh CT, Carlson R, Wlaschin A, Srienc F (2006) Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab Eng 8(6): 628–638. doi: 10.1016/j.ymben.2006.07.006

  • Urbanczik R (2007) Enumerating constrained elementary flux vectors of metabolic networks. Iet Systems Biology 1(5):274–279. doi:10.1049/iet-syb:20060073

    Article  PubMed  CAS  Google Scholar 

  • Urbanczik R, Wagner C (2004) An improved algorithm for stoichiometric network analysis: theory and applications. Bioinform:bti127. doi :10.1093/bioinformatics/bti127

  • Vallino JJ (1991) Identification of branch point restrictions in microbial metabolism through metabolic flux analysis and local network perturbations. Thesis, Massachusets Institute of Technology, Boston

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41(6):633–646

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Boesch BW, Palsson BO (1993) Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 42(1):59–73

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm T, Behre J, Schuster S (2004) Analysis of structural robustness of metabolic networks. Syst Biol 1(1):114–120

    Article  CAS  Google Scholar 

  • Wittmann C, and J. Becker (2007) The l-lysine story: from metabolic pathways to industrial production. In: Amino acid biosynthesis: pathways, regulation, and metabolic engineering,Springer, Heidelberg, pp 39–70. doi:10.1007/7171_2006_089

  • Xu XJ, Cao LM, Chen X (2008) Elementary flux mode analysis for optimized ethanol yield in anaerobic fermentation of glucose with Saccharomyces cerevisiae. Chin J Chem Eng 16(1):135–142

    Article  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (1999) Development of a kinetic model for l-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng 88(4):393–403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Venkatesh.

Additional information

Devesh Radhakrishnan, Meghna Rajvanshi contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhakrishnan, D., Rajvanshi, M. & Venkatesh, K.V. Phenotypic characterization of Corynebacterium glutamicum using elementary modes towards synthesis of amino acids. Syst Synth Biol 4, 281–291 (2010). https://doi.org/10.1007/s11693-011-9073-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-011-9073-8

Keywords

Navigation