Skip to main content
Log in

Morpho-Functional Analysis Using Procrustes Superimposition by Static Reference

  • Tools and Techniques
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

In conventional geometric morphometric analyses of limb long bones, differences in the evolutionary capacity of articular surfaces and non-articular structures often remain unrecognised. It can be shown that areas of high spatial variance dominate shape data, which is problematic for the functional interpretation of limb long bone shape. We herein introduce Procrustes superimposition by static reference (PSSR), a novel analysis strategy that aims to facilitate morpho-functional inference. This procedure exploits the spatial constraint of some reference structures (in our case, articular surfaces) for the superimposition of other subareas (e.g. muscle attachment sites) in relation to that static reference. PSSR allows for the transformation of raw scan data, enabling researchers to extract geometric models of two- and three-dimensional substructures that cannot effectively be integrated with landmarks. As we demonstrate by a simple model analysis for one muscle attachment site, this procedure can yield measures of direct functional relevance. Multivariate analysis of an extensive set of subareas indicates how this type of data relates to conventional shape coordinates. The shape evolution of xenarthran humeri, which has previously been subject to a detailed study (Milne et al., J Zool 278(1):48–56, 2009), serves as a test case. The concept of a variance-based separation of landmark subsets expands mathematical methods by incorporating knowledge about evolutionary constraints. PSSR could therefore find application far beyond the intuitive case study of long bone shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña, F., Sidorkewicj, N. S., Popp, A. I., & Casanave, E. B. (2017). A geometric morphometric study of sex differences in the scapula, humerus and ulna of Chaetophractus villosus (Xenarthra, Dasypodidae). Iheringia. Serie Zoologia, 107, e2017010.

    Article  Google Scholar 

  • Adams, D., Rohlf, F. J., & Slice, D. (2013). A field comes of age: Geometric morphometrics in the 21st century. Hystrix, 24(1), 7–14.

    Google Scholar 

  • Adams, D. C. (2014). A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology, 63(5), 685–697.

    Article  Google Scholar 

  • Albert, M. H., Le, H., & Small, C. G. (2003). Assessing landmark influence on shape variation. Biometrika, 90(3), 669–678.

    Article  Google Scholar 

  • Amson, E., Arnold, P., van Heteren, A. H., Canoville, A., & Nyakatura, J. A. (2017). Trabecular architecture in the forelimb epiphyses of extant xenarthrans (Mammalia). Frontiers in Zoology, 14(1), 52.

    Article  Google Scholar 

  • Amson, E., & Nyakatura, J. A. (2017). The postcranial musculoskeletal system of xenarthrans: Insights from over two centuries of research and future directions. Journal of Mammalian Evolution. https://doi.org/10.1007/s10914-017-9408-7.

    Article  Google Scholar 

  • Andersson, K. (2004). Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zoological Journal of the Linnean Society, 142(1), 91–104.

    Article  Google Scholar 

  • Bookstein, F. L. (1990). Higher-order features of shape change for landmark data. In Proceedings of the Michigan morphometrics workshop, Chap. 11 (pp. 237–250). Ann Arbor: The University of Michigan Museum of Zoology.

    Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bookstein, F. L. (1996a). Combining the tools of geometric morphometrics. In Advances in morphometrics (pp. 131–151). New York: Springer.

    Chapter  Google Scholar 

  • Bookstein, F. L. (1996b). Biometrics, biomathematics, and the morphometric synthesis. Bulletin of Mathematical Biology, 58, 313–365.

    Article  CAS  Google Scholar 

  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Localizing group differences in outline shape. In Proceedings of the workshop on mathematical methods in biomedical image analysis (pp. 279–289).

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modeling approach for adaptive evolution. In T. Price & B. J. Crespi (Eds.), The American Naturalist, Vol 164(6) (pp. 683–695).

    Article  Google Scholar 

  • Carter, D. R., & Beaupré, G. S. (2007). Skeletal function and form: Mechanobiology of skeletal development, aging, and regeneration. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chapman, R. E. (1990). Conventional Procrustes approaches. In Proceedings of the Michigan morphometrics workshop, Vol 2, Chap. 12 (pp. 251–268). Ann Arbor: The University of Michigan Museum of Zoology.

    Google Scholar 

  • Currie, A. (2013). Convergence as evidence. The British Journal for the Philosophy of Science, 64(4), 763.

    Article  Google Scholar 

  • Delsuc, F., Gibb, G. C., Kuch, M., Billet, G., Hautier, L., Southon, J., et al. (2016). The phylogenetic affinities of the extinct glyptodonts. Current Biology, 26(4), R155–R156.

    Article  CAS  Google Scholar 

  • Depecker, M., Renous, S., Penin, X., & Berge, C. (2006). Procrustes analysis: A tool to understand shape changes of the humerus in turtles (Chelonii). Comptes Rendus Palevol, 5(3–4), 509–518.

    Article  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis with applications in R. In Wiley series in probability and statistics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 751–760.

    Article  Google Scholar 

  • Esteve-Altava, B. (2017). In search of morphological modules: A systematic review. Biological Reviews, 92(3), 1332–1347.

    Article  Google Scholar 

  • Fabre, A.-C., Cornette, R., Goswami, A., & Peigné, S. (2015a). Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. Journal of Anatomy, 226(6), 596–610.

    Article  Google Scholar 

  • Fabre, A.-C., Cornette, R., Peigné, S., & Goswami, A. (2013a). Influence of body mass on the shape of forelimb in musteloid carnivorans. Biological Journal of the Linnean Society, 110(1), 91–103.

    Article  Google Scholar 

  • Fabre, A.-C., Cornette, R., Slater, G., Argot, C., Peigné, S., Goswami, A., et al. (2013b). Getting a grip on the evolution of grasping in musteloid carnivorans: A three-dimensional analysis of forelimb shape. Journal of Evolutionary Biology, 26(7), 1521–1535.

    Article  Google Scholar 

  • Fabre, A.-C., Salesa, M. J., Cornette, R., Antón, M., Morales, J., & Peigné, S. (2015b). Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, late miocene, Spain). The Science of Nature, 102(5), 1–13.

    CAS  Google Scholar 

  • Fruciano, C. (2016). Measurement error in geometric morphometrics. Development Genes and Evolution, 226(3), 139–158.

    Article  Google Scholar 

  • Gambaryan, P. P., Gasc, J.-P., & Renous, S. (2002). Cinefluorographical study of the burrowing movements in the common mole, Talpa europaea (Lipotyphla, Talpidae). Russian Journal of Theriology, 1(2), 91–109.

    Article  Google Scholar 

  • Gibb, G. C., Condamine, F. L., Kuch, M., Enk, J., Moraes-Barros, N., Superina, M., et al. (2015). Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Molecular Biology and Evolution, 33(3), 621.

    Article  Google Scholar 

  • Goswami, A., & Polly, P. D. (2010). Methods for studying morphological integration and modularity. In Quantitative methods in paleobiology, short course (pp. 213–243). Bethesda: The Paleontological Society.

    Google Scholar 

  • Gu, D., Chen, Y., Dai, K., Zhang, S., & Yuan, J. (2008). The shape of the acetabular cartilage surface: A geometric morphometric study using three-dimensional scanning. Medical Engineering & Physics, 30(8), 1024–1031.

    Article  Google Scholar 

  • Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: A method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy, 24(1), 103–109.

    Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions, Chap. 3 (pp. 73–98). Boston: Springer.

    Google Scholar 

  • Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355–376.

    Article  Google Scholar 

  • Hamrick, M. W. (1996). Articular size and curvature as determinants of carpal joint mobility and stability in strepsirhine primates. Journal of Morphology, 230(2), 113–127.

    Article  CAS  Google Scholar 

  • Harcourt-Smith, W. E., Tallman, M., Frost, S. R., Wiley, D. F., Rohlf, F. J., & Delson, E. (2008). Analysis of selected hominoid joint surfaces using laser scanning and geometric morphometrics: A preliminary report. In Mammalian evolutionary morphology, Chap. 17 (1 ed.) (pp. 373–383). New York: Springer.

    Chapter  Google Scholar 

  • Hildebrand, M. (1985). Digging of quadrupeds. In Functional vertebrate morphology, Chap. 6 (pp. 89–109). Cambridge, MA: Harvard University Press.

  • Jones, E., Oliphant, E., Peterson, P., et al. (2001). SciPy: Open source scientific tools for Python. Accessed April 24, 2018, form http://www.scipy.org.

  • Kendall, D. G. (1977). The diffusion of shape. Advances in Applied Probability, 9(3), 428–430.

    Article  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2), 81–121.

    Article  Google Scholar 

  • Klingenberg, C. P. (2004). Integration, modules, and development: Molecules to morphology to evolution. In Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 213–230). Oxford: Oxford University Press.

    Google Scholar 

  • Klingenberg, C. P., & Gidaszewski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59(3), 245–261.

    Article  CAS  Google Scholar 

  • Klingenberg, C. P., & Marugán-Lobón, J. (2013). Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Systematic Biology, 62(4), 591–610.

    Article  Google Scholar 

  • Macalister, A. (1875). A monograph of the anatomy of Chlamydophorus truncatus (Harlan), with notes on the structure of other species of Edentata. The Transactions of the Royal Irish Academy, 25, 219–278.

    Google Scholar 

  • MacLeod, N. (2013). PalaeoMath101: Part 28 - landmarks and semilandmarks. Palaeontology Newsletter Nr. 82. Accessed December 06, 2017, from http://www.palass.org/publications/newsletter/palaeomath-101/ palaeomath-part-28-landmarks-and-semilandmarks.

  • Marchi, D., Ruff, C. B., Capobianco, A., Rafferty, K. L., Habib, M. B., & Patel, B. A. (2016). The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal morphology of the humerus and femur. Journal of Morphology, 277(9), 1199–1218.

    Article  Google Scholar 

  • Martín-Serra, A., Figueirido, B., & Palmqvist, P. (2014). A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS ONE, 9(1), 1–20.

    Article  Google Scholar 

  • Ménégaux, A. (1908). Sur le squelette du membre antérieur de Bradypus torquatus Ill. Comptes Rendus de l’Académie des Sciences, 147, 637–640.

    Google Scholar 

  • Michilsens, F., Vereecke, E. E., D’Août, K., & Aerts, P. (2009). Functional anatomy of the gibbon forelimb: Adaptations to a brachiating lifestyle. Journal of Anatomy, 215(3), 335–354.

    Article  Google Scholar 

  • Mielke, M., Wölfer, J., Arnold, P., van Heteren, A. H., Amson, E., & Nyakatura, J. A. (2018). Trabecular architecture in the sciuromorph femoral head: Allometry and functional adaptation. Zoological Letters, 4(1), 10.

    Article  Google Scholar 

  • Milne, N., Vizcaíno, S., & Fernicola, J. (2009). A 3D geometric morphometric analysis of digging ability in the extant and fossil cingulate humerus. Journal of Zoology, 278(1), 48–56.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38(1), 100–114.

    Article  Google Scholar 

  • Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36(2), 235–247.

    Article  Google Scholar 

  • Monteiro, L. R., & Abe, A. S. (1999). Functional and historical determinants of shape in the scapula of xenarthran mammals: Evolution of a complex morphological structure. Journal of Morphology, 241(3), 251–263.

    Article  CAS  Google Scholar 

  • Monteiro, L. R., Bonato, V., & Dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7(5), 429–439.

    Article  Google Scholar 

  • Morgan, C. C. (2009). Geometric morphometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): Form, function and phylogeny. Mammalian Biology - Zeitschrift für Säugetierkunde, 74(6), 497–506.

    Article  Google Scholar 

  • Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., et al. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756.

    Article  Google Scholar 

  • Muñoz, N. A., Cassini, G. H., Candela, A. M., & Vizcaíno, S. F. (2017). Ulnar articular surface 3-D landmarks and ecomorphology of small mammals: A case study of two early miocene typotheres (Notoungulata) from Patagonia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106(4), 315–323.

    Article  Google Scholar 

  • Nyakatura, J. A. (2012). The convergent evolution of suspensory posture and locomotion in tree sloths. Journal of Mammalian Evolution, 19(3), 225–234.

    Article  Google Scholar 

  • Plochocki, J. H., Riscigno, C. J., & Garcia, M. (2006). Functional adaptation of the femoral head to voluntary exercise. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A(7), 776–781.

    Article  Google Scholar 

  • Polly, P. D. (2007). Limbs in mammalian evolution. In Fins into limbs: Evolution, development, and transformation, Chap. 15 (pp. 245–268). Chicago: University of Chicago Press.

    Google Scholar 

  • Rietveld, A., Daanen, H., Rozing, P., & Obermann, W. (1988). The lever arm in glenohumeral abduction after hemiarthroplasty. Bone & Joint Journal, 70-B(4), 561–565.

    Google Scholar 

  • Rohlf, F. J., & Corti, M. (2001). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49, 740–753.

    Article  Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39(1), 40.

    Google Scholar 

  • Salton, J. A., & Sargis, E. J. (2008). Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 51–71). Netherlands: Springer.

    Chapter  Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Oxford: Blakiston.

    Google Scholar 

  • Shirazi-Adl, A., & Mesfar, W. (2007). Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads. Clinical Biomechanics, 22(3), 344–351.

    Article  CAS  Google Scholar 

  • Stearns, S. C. (2002). Progress on canalization. Proceedings of the National Academy of Sciences, 99(16), 10229–10230.

    Article  CAS  Google Scholar 

  • Superina, M. (2011). Husbandry of a pink fairy armadillo (Chlamyphorus truncatus): Case study of a cryptic and little known species in captivity. Zoo Biology, 30(2), 225–231.

    Article  Google Scholar 

  • Tommasini, S. M., Hu, B., Nadeau, J. H., & Jepsen, K. J. (2009). Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae. Journal of Bone and Mineral Research, 24(4), 606–620.

    Article  Google Scholar 

  • Tommasini, S. M., Nasser, P., Hu, B., & Jepsen, K. J. (2008). Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. Journal of Bone and Mineral Research, 23(2), 236–246.

    Article  Google Scholar 

  • Vizcaíno, S. F., & Loughry, W. (2008). Biology of the Xenarthra. Gainesville: University Press of Florida.

    Google Scholar 

  • von Cramon-Taubadel, N., Frazier, B. C., & Lahr, M. M. (2007). The problem of assessing landmark error in geometric morphometrics: Theory, methods, and modifications. American Journal of Physical Anthropology, 134(1), 24–35.

    Article  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer (2nd ed.). San Diego: Academic Press.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Maja Mielke and Jan Wölfer for useful feedback on an early version the manuscript. We appreciate the detailed review and constructive suggestions by Julien Claude and one anonymous reviewer. The following curators/collection managers granted access to specimens that were used in this study, for which we are very thankful: Gerhard Scholtz (Zoologische Lehrsammlung der Humboldt-Universität zu Berlin), Frieder Mayer, Christiane Funk and Steffen Bock (Museum für Naturkunde, Berlin), Thomas M. Kaiser (Centrum für Naturkunde, Universität Hamburg), Anneke H. van Heteren (Zoologische Staatssammlung München), Irina Ruf and Katrin Krohmann (Senckenbergmuseum Frankfurt) and Stefan Merker (Staatliches Museum für Naturkunde, Stuttgart). Funded by the German Research Council (DFG EXC 1027 to FM and JAN and DFG AM 517/1-1 to EA) and by the Alexander von Humboldt Foundation (to EA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Mielke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource S1

: List of scans. (XLSX 11 KB)

Online Resource S2

: List of landmarks. (XLSX 10 KB)

Online Resource S3

: List of subareas. (XLSX 8 KB)

Online Resource S4

: Subarea Selection tool (VTK, python) that uses surface colouration by curvature. (PY 32 KB)

Online Resource S5

: Python Jupyter Notebook tutorial for the processes of PSSR and subarea PCA. (ZIP 232 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielke, F., Amson, E. & Nyakatura, J.A. Morpho-Functional Analysis Using Procrustes Superimposition by Static Reference. Evol Biol 45, 449–461 (2018). https://doi.org/10.1007/s11692-018-9456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-018-9456-9

Keywords

Navigation