Skip to main content

Advertisement

Log in

Phylogenetic signal, function and integration in the subunits of the carnivoran mandible

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Complex phenotypes could be interpreted as the result of functional integration between identifiable subunits. Common developmental or ecological factors may favour macroevolutionary morphological integration so that functional subunits also covary above the species level. We investigate shape variation and functional integration in two subunits of the mammalian mandible: the corpus and the ramus in a subset of extant terrestrial Carnivora using geometric morphometric and comparative methods. More specifically, we test if corpus and ramus shape exhibit similar degree of homoplasy and if these traits covary above species level. Additionally, broad functional categorisations (predaceous and non predaceous) are investigated to test if differences in morphological variation and integration at macroevolutionary scale occur. Principal components of shape data show a significant phylogenetic signal in both mandibular subunits, with the ramus exhibiting a higher degree of homoplasy than the corpus. Functional groups (predators and non-predators) are significantly distinct in corpus shape, while in the ramus significance emerges only after removing the phylogenetic signal. Partial Least Square shows that mandibular corpus and ramus region covaries above species level even if this trend is not supported when employing comparative methods. Only in a subset of predaceous species covariation still hold. We conclude that mandibular subunits of Carnivora differ considerably in shape among predaceous and non-predaceous species because of the adaptive selection pressure imposed by catching and hold of live prey. This selective process also favoured macroevolutionary integration in predaceous carnivorans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, D. C. (2008). Phylogenetic meta-analysis. Evolution, 62(3), 567–572.

    Article  PubMed  Google Scholar 

  • Atchley, W. R., & Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Review, 66, 101–157.

    CAS  Google Scholar 

  • Bastir, M., Rosas, A., Stringer, C., Cuétara, J. M., Kruszynski, R., Weber, G. W., et al. (2010). Effects of brain and facial size on basicranial form in human and primate evolution. Journal of Human Evolution, 58, 424–431.

    Article  PubMed  Google Scholar 

  • Biknevicius, A. R., & Van Valkenburgh, B. (1996). Design for killing: Craniodental adaptations of mammalian predators. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (Vol. 2, pp. 393–428). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., & Purvis, A. (1999). Building large trees by combining phylogenetic information: A complete phylogeny of the extant Carnivora (Mammalia). Biological Review Cambridge Philosophical Society, 74(2), 143–175.

    Article  CAS  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745.

    PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data. Geometry and biology. NY: Cambridge University Press.

    Google Scholar 

  • Cardini, A. (2003). The geometry of the marmot (Rodentia: Sciuridae) mandible: Phylogeny and patterns of morphological evolution. Systematic Biology, 52(2), 186–205.

    Article  PubMed  Google Scholar 

  • Christiansen, P., & Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88(2), 347–358.

    Article  PubMed  Google Scholar 

  • Cobb, S. N., & Panagiotopoulou, O. (2011). Balancing the spatial demands of the developing dentition with the mechanical demands of the catarrhine mandibular symphysis. Journal of Anatomy, 218(1), 96–111.

    Article  PubMed  Google Scholar 

  • Crusafont-Pairó, M., & Truyols-Santonja J. (1957). Estudios masterométricos en la evolución Fisípedos. I. Los módulos angulares a y b. II. Los parámetros lineales P, C, y T. Boletino Instituto Geologico y Minero España 68: 1–140.

  • Ewer, R. F. (1973). The carnivores. New York: Cornell University Press.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125(1), 1–15.

    Article  Google Scholar 

  • Figueirido, B., MacLeod, N., Krieger, J., De Renzi, M., Pérez-Claros, J. A., & Palmqvist, P. (2011). Constraint and adaptation in the evolution of carnivoran skull shape. Paleobiology, 37(3), 490–518.

    Article  Google Scholar 

  • Figuerido, B., Serrano-Alarcón, F. J., Slater, G. J., & Palmqvist, P. (2010). Shape at the cross-roads: Homoplasy and history in the evolution of the carnivoran skull towards herbivory. Journal of Evolutionary Biology, 23(12), 2579–2594.

    Article  Google Scholar 

  • Friscia, A. R., Van Valkenburgh, B., & Biknevicius, A. R. (2007). An ecomorphological analysis of extant small carnivorans. Journal of Zoology, London, 272, 82–100.

    Article  Google Scholar 

  • Garland, T., Bennett, A. F., & Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015–3035.

    Article  PubMed  Google Scholar 

  • Gittleman, J. L. (1985). Carnivore body size: Ecological and taxonomic correlates. Oecologia, 67(4), 540–554.

    Article  Google Scholar 

  • Goswami, A. (2006). Morphological integration in the carnivoran skull. Evolution, 60(1), 122–136.

    Google Scholar 

  • Goswami, A. (2010). Introduction to carnivora. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form, and function (pp. 1–24). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Goswami A., & Polly P. D. (2010). Methods for studying morphological integration and modularity. In J. Alroy, G. Hunt (Eds.) Quantitative paleontology. Paleontological society special Publications. The paleontological society (pp. 213–243).

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Harmon, L. J., Kolbe, J. J., Cheverud, J. M., & Losos, J. B. (2005). Convergence and the multidimensional niche. Evolution, 59(2), 409–421.

    PubMed  Google Scholar 

  • Holliday, J. A. (2010). Evolution in carnivora: Identifying a morphological bias. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution. New views on phylogeny, form and function (pp. 189–224). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Holliday, J. A., & Steppan, S. J. (2004). Evolution of hypercarnivory: The effect of specialization on morphological and taxonomic diversity. Paleobiology, 30, 108–128.

    Article  Google Scholar 

  • Klingenberg, C. P., & Gidazwiski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59(3), 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., & Leamy, L. J. (2001). Quantitative genetics in the geometric shape in the mouse mandible. Evolution, 55(11), 2342–2352.

    PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J.-C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution and Devolopment, 5(5), 522–531.

    Article  Google Scholar 

  • Losos, J. B. (2011a). Seeing the forest for the trees: The limitations of phylogenies in comparative biology. The American Naturalist, 177(6), 709–727.

    Article  PubMed  Google Scholar 

  • Losos, J. B. (2011b). Convergence, adaptation, and constraint. Evolution, 65, 1827–1840.

    Article  PubMed  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (1997–2010). Mesquite: A modular system for evolutionary analysis. Version 2.74. http://www.mesquiteproject.org.

  • Márquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62(10), 2688–2708.

    Article  PubMed  Google Scholar 

  • Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149(4), 646–667.

    Article  Google Scholar 

  • Meiri, S., Dayan, T., & Simberloff, D. (2005). Variability and correlations in carnivore crania and dentition. Functional Ecology, 19, 337–343.

    Article  Google Scholar 

  • Meloro, C. (2011a). Feeding habits of Plio-Pleistocene large carnivores as revealed by their mandibular geometry. Journal of Vertebrate Palaeontology, 31(2), 428–446.

    Article  Google Scholar 

  • Meloro, C. (2011b). Morphological disparity in Plio-Pleistocene large carnivore guilds from Italian peninsula. Acta Palaeontologica Polonica, 56(1), 33–44.

    Article  Google Scholar 

  • Meloro, C., & O’Higgins, P. (2011). Ecological adaptations of mandibular form in fissiped Carnivora. Journal of Mammalian Evolution, 18, 185–200.

    Article  Google Scholar 

  • Meloro, C., & Raia, P. (2010). Cats and dogs down the tree: The tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evolutionary Biology, 37, 177–186.

    Article  Google Scholar 

  • Meloro, C., Raia, P., Piras, P., Barbera, C., & O’Higgins, P. (2008). The shape of the mandibular corpus in large fissiped carnivores: Allometry, function and phylogeny. Zoological Journal of the Linnean Society, 154(4), 832–845.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution, 62(4), 943–958.

    Article  PubMed  Google Scholar 

  • Monteiro, L. R., & Nogueira, M. R. (2009). Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution, 64–3, 724–744.

    Google Scholar 

  • Monteiro, L. R., & Nogueira, M. R. (2011). Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Biology, 11, 137. doi:10.1186/1471-2148-11-137.

    Google Scholar 

  • Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: mandible shape convergence in spiny rats (Rodentia: Echimyidae). Evolution and Development, 7(5), 429–439.

    Article  PubMed  Google Scholar 

  • Nogueira, M. R., Peracchi, A. L., & Monteiro, L. R. (2009). Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23(4), 715–723.

    Article  Google Scholar 

  • Polly, P. D. (2008). Adaptive zones and the pinniped ankle: A 3D quantitative analysis of Carnivoran tarsal evolution. In E. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay, ed (pp. 165–194). Dordrecht: Springer.

    Google Scholar 

  • Radinsky, L. B. (1981a). Evolution of skull shape in carnivores, 1: Representative modern carnivores. Biological Journal of the Linnean Society, 15(4), 369–388.

    Article  Google Scholar 

  • Radinsky, L. B. (1981b). Evolution of skull shape in carnivores, 2: Additional modern carnivores. Biological Journal of the Linnean Society, 16(4), 337–355.

    Article  Google Scholar 

  • Raia, P. (2004). Morphological correlates of tough food consumption in carnivores. Italian Journal of Zoology, 71(1), 45–50.

    Article  Google Scholar 

  • Raia, P., Carotenuto, F., Meloro, C., Piras, P., & Pushkina, D. (2010). The shape of contention. How much adaptation related to hypsodonty is there in ungulate mandibles? Evolution, 64(5), 1489–1503.

    PubMed  Google Scholar 

  • Revell, L. J., Johnson, M. A., Schulte, J. A., I. I., Kolbe, J. J., & Losos, J. B. (2007). A phylogenetic test for adaptive convergence in rockdwelling lizards. Evolution, 61, 2898–2912.

    Article  PubMed  Google Scholar 

  • Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55(11), 2143–2160.

    PubMed  CAS  Google Scholar 

  • Rohlf, F. J. (2004). Thin plate spline v. 1.20. Ecology and evolution. Stony Brook: SUNY.

    Google Scholar 

  • Rohlf, F. J. (2006a). tpsDig 2.10. Department of ecology and evolution. Stony Brook, New York: State University of New York.

    Google Scholar 

  • Rohlf, F. J. (2006b). tpsPLS 1.18. Department of ecology and evolution. Stony Brook, New York: State University of New York.

    Google Scholar 

  • Rohlf, F. J. (2006c). NTSYSpc v. 2.21c. New York: Exeter Software.

    Google Scholar 

  • Rohlf, F. J. (2006d). A comment on phylogenetic correction. Evolution, 60(7), 1509–1515.

    Article  PubMed  Google Scholar 

  • Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least squares to study covariation in shape. Systematic Biology, 49, 740–753.

    Article  PubMed  CAS  Google Scholar 

  • Rohlf, F. J., & Slice, D. E. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.

    Article  Google Scholar 

  • Santana, S. E., & Dumont, E. R. (2009). Connecting behaviour and performance: The evolution of biting behaviour and bite performance in bats. Journal of Evolutionary Biology, 22, 2131–2145.

    Article  PubMed  CAS  Google Scholar 

  • Santana, S. E., Dumont, E. R., & Davis, J. L. (2010). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24(4), 776–784.

    Article  Google Scholar 

  • Scapino, R. P. (1976). Function of the digastrics muscle in carnivores. Journal of Morphology, 150, 843–860.

    Article  Google Scholar 

  • Stayton, C. T. (2006). Testing hypotheses of convergence with multivariate data: Morphological and functional convergence among herbivorous lizards. Evolution, 60, 824–841.

    PubMed  Google Scholar 

  • Therrien, F. (2005a). Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology (London), 267, 249–270.

    Article  Google Scholar 

  • Therrien, F. (2005b). Feeding behaviour and bite force of sabretoothed predators. Zoological Journal of the Linnean Society, 145(3), 393–426.

    Article  Google Scholar 

  • Tseng, Z. J., & Wang, X. (2011). Do convergent ecomorphs evolve through convergent morphological pathways? Cranial shape evolution in fossil hyaenids and borophagine canids (Carnivora, Mammalia). Paleobiology, 37(3), 470–489.

    Article  Google Scholar 

  • Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14(2), 155–173.

    Google Scholar 

  • Van Valkenburgh, B. (2007). Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 47(1), 147–163.

    Article  PubMed  Google Scholar 

  • Werdelin, L. (1996). Carnivoran ecomorphology: A philogenetic perspective. In J. L. Gittleman (Ed.), Carnivore behaviour, ecology, and evolution (vol. 2, pp. 582–624). New York: Cornell University Press.

    Google Scholar 

  • Wroe, S., McHenry, C., & Thomason, J. (2005). Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceeding of the Royal Society B, 272(1563), 619–625.

    Article  Google Scholar 

  • Young, R. L., Sweeney, M. J., & Badyaev, A. V. (2010). Morphological diversity and ecological similarity: Versatility of muscular and skeletal morphologies enables ecological convergence in shrews. Functional Ecology, 24(3), 556–575.

    Article  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists. A primer. USA: Elsevier.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the staff of British Museum of Natural history and of the Royal Museum of Scotland. In particular, we would like to thank: P. Jenkins, L. Tomsett, R. Portela-Miguez, D. Hills, A. Salvador, A. Kitchner and J. Herman for their support and care. P. Piras and F. Lucci kindly shared their mandible database of felids. B. Hallgrimsson and two anonymous reviewers provided significant insights to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Meloro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meloro, C., Raia, P., Carotenuto, F. et al. Phylogenetic signal, function and integration in the subunits of the carnivoran mandible. Evol Biol 38, 465–475 (2011). https://doi.org/10.1007/s11692-011-9135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9135-6

Keywords

Navigation