Skip to main content

Advertisement

Log in

The Developmental Basis of Variational Modularity: Insights from Quantitative Genetics, Morphometrics, and Developmental Biology

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Groups of correlated characters (variational modules) often are considered to be the result of dissociated local developmental factors, i.e., of a modular genotype–phenotype map. But certain sets of pleiotropic factors can equally well induce modular phenotypic variation—no local developmental factors are necessary for a modular covariance structure. It is thus not possible to infer genetic or developmental modularity from standing variation alone. Yet, only for approximately linear genotype–phenotype maps is the induced covariance structure stable over changes of the phenotypic mean. For larger genetic and phenotypic variation, such as on a macroevolutionary level, developmental effects often are nonlinear and variational modularity remains stable only when it is realized by local dissociated developmental factors with no overlap of pleiotropic ranges. The evo-devo concept of modularity concurs only at this macroevolutionary level with the quantitative notion of variational modularity. Empirical evidence on the genetic and developmental architecture underlying phenotypic variation is inconclusive and partly subject to methodological problems. Many studies seem to indicate modularized phenotypic variation and local clusters of QTL effects, whereas other studies find support for several alternative models of modularity and report continuous distributions of QTL effects. This inconsistency partly results from the neglect of spatial relationships among the measured traits. Given the complex development of higher organisms, a combination of pleiotropic factors and more local developmental effects with a hierarchical, overlapping, and more or less continuous distribution appears most likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal, A. F., & Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate of adaptation? Proceedings of the Royal Society of London Series B, 276, 1183–1191.

    PubMed  Google Scholar 

  • Albert, A. Y., Sawaya, S., Vines, T. H., Knecht, A. K., Miller, C. T., Summers, B. R., Balabhadra, S., Kingsley, D. M., & Schluter, D. (2008). The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size. Evolution, 62(1), 76–85.

    PubMed  Google Scholar 

  • Arnold, S. J., Bürger, R., Holenhole, P. A., Beverly, C. A., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution, 62, 2451–2461.

    PubMed  Google Scholar 

  • Ashe, H. L., & Briscoe, J. (2006). The interpretation of morphogen gradients. Development, 133(3), 385–394.

    CAS  PubMed  Google Scholar 

  • Baatz, M., & Wagner, G. P. (1997). Adaptive inertia caused by hidden pleiotropic effects. Theoretical Population Biology , 51, 49–66.

    Google Scholar 

  • Badyaev, A. V., & Foresman, K. R. (2004). Evolution of morphological integration. I. functional units channel stress-induced variation in shrew mandibles. American Naturalist, 163(6), 868–879.

    PubMed  Google Scholar 

  • Barton, N. H., & Turelli, M. (1987). Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genetical Research, 49(2),157–173.

    CAS  PubMed  Google Scholar 

  • Bastir, M., & Rosas, A. (2005). Hierarchical nature of morphological integration and modularity in the human posterior face. American Journal of Physical Anthropology, 128(1), 26–34.

    PubMed  Google Scholar 

  • Bastir, M., & Rosas, A. (2006). Correlated variation between the lateral basicranium and the face: A geometric morphometric study in different human groups. Archives of Oral Biology, 51, 814–824.

    PubMed  Google Scholar 

  • Beldade, P., Koops, K., & Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, 416(6883), 844–847.

    CAS  PubMed  Google Scholar 

  • Bookstein, F. L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K., & Seidler, H. (2003). Cranial integration in Homo: Singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution, 44(2), 167–187.

    PubMed  Google Scholar 

  • Brandon, R. N. (2005). Evolutionary modules: Conceptual analyses and empirical hypotheses. In W. Callebaut & D. Rasskin-Gutman (Eds.), Modularity understanding the development and evolution of natural complex systems (pp. 51–60). Cambridge, MA: MIT Press.

    Google Scholar 

  • Burgio, G., Baylac, M., Heyer, E., & Montagutelli, X. (2009). Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species. Evolution, 63(10), 2668–2686.

    PubMed  Google Scholar 

  • Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of the Life Sciences, 26(1), 59–80.

    PubMed  Google Scholar 

  • Callebaut, W., & Rasskin-Gutman, D. (Eds.). (2005). Modularity: Understanding the development and evolution of natural complex systems. Cambridge MA:MIT Press.

    Google Scholar 

  • Carter, A. J., Hermisson J., & Hansen, T. F. (2005). The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology, 68(3),179–196.

    PubMed  Google Scholar 

  • Chernoff, B., & Magwene, P. M. (1999). Morphological integration: Forty years later (pp. 319–354). Chicago: University of Chicago.

    Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499–516.

    Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetic and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.

    CAS  PubMed  Google Scholar 

  • Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145(1), 63–89.

    Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology (Mol Dev Evol), 302B, 424–435.

    CAS  Google Scholar 

  • Cheverud, J. M., & Routman, E. J. (1995). Epistasis and its contribution to genetic variance components. Genetics, 139(3), 1455–1461.

    CAS  PubMed  Google Scholar 

  • Cobb, S. N., & Baverstock, H. (2009). Tooth root and craniomandibular morphological integration in the common Chimpanzee (Pan troglodytes): Alternative developmental models for the determinants of root length. Frontiers of Oral Biology, 13, 121–127.

    PubMed  Google Scholar 

  • Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R., & Church, G. M. (2005). A global view of pleiotropy and phenotypically derived gene function in yeast. Molecular Systems Biology, 1, E1–E11.

    Google Scholar 

  • Eroukhmanoff, F. (2009). Just how much is the G-matrix actually constraining adaptation? Evolutionary Biology, 36, 323–326.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford, UK: Clarendon.

    Google Scholar 

  • Forgacs, G., & Newman, S. A. (2005). Biological physics of the developing embryo. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Galis, F., & Metz, J. A. J. (2001). Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. Journal of Experimental Zoology, 291, 195–204.

    CAS  PubMed  Google Scholar 

  • Gavrilets, S. (2004). Fitness landscapes and the origin of species (monographs in population biology). Princeton, NJ: Princton University Press.

    Google Scholar 

  • Gilchrist M. A., & Nijhout, H. F. (2001). Nonlinear developmental processes as sources of dominance. Genetics, 159, 423–432.

    CAS  PubMed  Google Scholar 

  • Gjuvsland, A. B., Hayes, B. J., Omholt, S. W., & Carlborg, O. (2007). Statistical epistasis is a generic feature of gene regulatory networks. Genetics, 175(1), 411–420.

    PubMed  Google Scholar 

  • Goldbeter, A., Gonze, D., & Pourquié, O. (2007). Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Developmental Dynamics, 236, 1495–1508.

    CAS  PubMed  Google Scholar 

  • Goswami, A. (2006). Cranial modularity shifts during mammalian evolution. American Naturalist, 168(2), 270–280.

    PubMed  Google Scholar 

  • Gromko, M. H. (1995). Unpredictability of correlated response to selection: Pleiotropy and sampling interact. Evolution, 49, 685–693.

    Google Scholar 

  • Gunz, P., & Harvati, K. (2007). The Neanderthal “chignon”: Variation, integration, and homology. Journal of Human Evolution, 52(3), 262–274.

    PubMed  Google Scholar 

  • Hallgrimsson, B., Brown, J. J., Ford-Hutchinson, A. F., Sheets, H. D., Zelditch M. L., & Jirik F. R. (2006). The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evolution & Development, 8(1), 61–73.

    CAS  Google Scholar 

  • Hallgrimsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48, 373–384.

    Google Scholar 

  • Hallgrimsson, B., Lieberman, D. E., Young, N. M., Parsons, T., & Wat, S. (2007). Evolution of covariance in the mammalian skull. In G. Bock & J. Goode (Eds.), Tinkering: The microevolution of development, Novartis foundation symposium 284 (pp. 164–190). Chichester, UK: Wiley.

  • Hallgrimsson, B., Willmore, K., Dorval, C., & Cooper, D. M. (2004). Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 302(3), 207–225.

    PubMed  Google Scholar 

  • Hallgrimsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. American Journal of Physical Anthropology, 35, 131–158.

    PubMed  Google Scholar 

  • Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69(2–3), 83–94.

    PubMed  Google Scholar 

  • Hansen, T. F. (2006). The evolution of genetic architecture annual review of ecology. Evolution, and Systematics, 37, 123–157.

    Google Scholar 

  • Hansen, T. F. (2008). Macroevolutionary quantitative genetics? A comment on Polly. Evolutionary Biology, 35(5), 182–185.

    Google Scholar 

  • Hansen, T. F., Alvarez-Castro, J. M., Carter, A. J., Hermisson, J., & Wagner G. P. (2006). Evolution of genetic architecture under directional selection. Evolution, 60(8), 1523–1536.

    PubMed  Google Scholar 

  • He, X., & Zhang, J. (2006). Toward a molecular understanding of pleiotropy. Genetics, 173(4), 1885–1891.

    CAS  PubMed  Google Scholar 

  • Hermisson, J., & McGregor, A. P. (2008). Pleiotropic scaling and QTL data. Nature, 456, E3–E4.

    CAS  PubMed  Google Scholar 

  • Hermisson, J., & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics, 168(4), 2271–2284.

    PubMed  Google Scholar 

  • Houle, D. (1991). Genetic covariance of fitness correlates: What genetic correlations are made of and why it matters. Evolution, 45, 630–648.

    Google Scholar 

  • Juenger, T., Perez-Perez, J. M., Bernal, S., & Micol, J. L. (2005). Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: Evidence for modular genetic architecture. Evolution & Development, 7(3), 259–271.

    CAS  Google Scholar 

  • Kelly, J. K. (2009). Connecting QTLS to the g-matrix of evolutionary quantitative genetics. Evolution, 63(4), 813–825.

    PubMed  Google Scholar 

  • Kenney-Hunt, J. P., Wang, B., Norgard, E. A., Fawcett, G., Falk, D., Pletscher, L. S., et al. (2008). Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics, 178(4), 2275–2288.

    PubMed  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution and Systematics, 39, 115–132.

    Google Scholar 

  • Klingenberg, C. P, Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of the quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921.

    CAS  PubMed  Google Scholar 

  • Klingenberg, C. P., Leamy, L. J, Routman, E. J., & Cheverud, J. M. (2001) Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802.

    CAS  PubMed  Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003) Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evolution & Development, 5(5), 522–531.

    Google Scholar 

  • Klingenberg, C. P., & Zaklan, S. D. (2000). Morphological integration between developmental compartments in the Drosophila wing. Evolution, 54(4), 1273–1285.

    CAS  PubMed  Google Scholar 

  • Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S., & Bairlein, F. (2009). Functional morphology and integration of corvid skulls—a 3D geometric morphometric approach. Frontiers in Zoology, 6, 2.

    PubMed  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.

    Google Scholar 

  • Lawler, R. R. (2008). Morphological integration and natural selection in the postcranium of wild verreaux’s sifaka (Propithecus verreauxi verreauxi). American Journal of Physical Anthropology, 136(2), 204–213.

    PubMed  Google Scholar 

  • Leamy, L. J., Routman, E. J., & Cheverud, J. M. (1999) Quantitative trait loci for early- and late-developing skull characteristics in mice: A test of the genetic independence model of morphological integraion. American Naturalist, 153(2), 201–214.

    Google Scholar 

  • Levine, E., Zhang, Z., Kuhlman, T., & Hwa T. (2007). Quantitative characteristics of gene regulation by small RNA. PLoS Biology, 5(9), e229.

    PubMed  Google Scholar 

  • Lewenz, M. A., & Whiteley M. A. (1902). Data for the problem of evolution in man. A second study of variability and correlation of the hand. Biometika, 1, 345–360.

    Google Scholar 

  • Lewis, J., Slack, J. M. W, & Wolpert, L. (1977). Thresholds in development. Journal of Theoretical Biology, 65(3):579–590.

    CAS  PubMed  Google Scholar 

  • Lewontin, R. C. (1978). Adaptation. Scientific American, 239(3), 156–169.

    Article  Google Scholar 

  • Marquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62(10), 2688–2708.

    PubMed  Google Scholar 

  • Marroig, G., De Vivo, M., & Cheverud, J. (2004). Cranial evolution in sakis (Pithecia, Platyrrhini) II: Evolutionary processes and morphological integration. Journal of Evolutionary Biology, 17, 144–155.

    CAS  PubMed  Google Scholar 

  • Martinez-Abadias, N., Paschetta, C., de Azevedo, S., Esparza, M., & Gonzalez-Jose, R. (2009). Developmental and genetic constraints on neurocranial globularity: Insights from analyses of deformed skulls and quantitative genetics. Evolutionary Biology, 36, 37–56.

    Google Scholar 

  • Mezey, J. G., Cheverud, J., & Wagner, G. P. (2000) Is the genotype–phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.

    CAS  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836.

    PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution 62(4), 943–958.

    PubMed  Google Scholar 

  • Mitteroecker P., & Bookstein F. L. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63(3), 727–737.

    PubMed  Google Scholar 

  • Monteiro, L. R, Bonato, V., & Dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7(5), 429–439.

    Google Scholar 

  • Müller G. B. (1990) Developmental mechanisms at the origin of morphological novelty: A side-effect hypothesis. In M. Nitecki (Ed.), Evolutionary innovations (pp. 99–130). Chicago: University of Chicago Press.

    Google Scholar 

  • Müller, G. B. (2003) Embryonic motility: Environmental influences and evolutionary innovation. Evolution & Development, 5(1), 56–60.

    Google Scholar 

  • Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews. Genetics, 8(12), 943–949.

    PubMed  Google Scholar 

  • Nemeschkal, H. L. (1999). Morphometric correlation patterns of adult birds (Fringillidae: Passeriformes and Columbiformes) mirror the expression of developmental control genes. Evolution, 53(3), 899–918.

    Google Scholar 

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • Omholt, S. W., Plahte, E., Øyehaug, L., & Xiang, K. (2000). Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics, 155, 969–980.

    CAS  PubMed  Google Scholar 

  • Parsons, T. E., Kristensen, E., Hornung, L., Diewert, V. M., Boyd, S. K., German R. Z., et al. (2008). Phenotypic variability and craniofacial dysmorphology: Increased shape variance in a mouse model for cleft lip. Journal of Anatomy, 212(2), 135–143.

    PubMed  Google Scholar 

  • Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008) Genetic variation in pleiotropy differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62(1), 199–213.

    PubMed  Google Scholar 

  • Pigliucci, M. (2006) Genetic variance–covariance matrices: A critique of the evolutionary quantitative genetics research program. Biology and Philosophy, 21, 1–23.

    Google Scholar 

  • Polly, P. D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35(2), 83–96.

    Google Scholar 

  • Pyeritz, R. E. (1989). Pleiotropy revisited: Molecular explanations of a classic concept. American Journal of Medical Genetics, 34(1), 124–134.

    CAS  PubMed  Google Scholar 

  • Raff, R. (1996) The shape of life: Genes, development, and the evolution of animal form. Chicago: University Chicago Press.

    Google Scholar 

  • Reyment, R., & Jöreskog, K. G. (1993). Applied factor analysis in the natural science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rice, S. H. (1998). The evolution of development and the breaking of von Baer’s laws: Modeling the evolution of development with epistasis. Evolution, 52, 647–656.

    Google Scholar 

  • Rice, S. H. (2002). A general population genetic theory for the evolution of developmental interactions. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15518–15523.

    CAS  PubMed  Google Scholar 

  • Rice, S. H. (2004). Developmental associations between traits: Covariance and beyond. Genetics, 166, 513–526.

    PubMed  Google Scholar 

  • Richtsmeier, J. T., & DeLeon, V. B. (2009). Morphological integration of the skull in craniofacial anomalies. Orthodontics and Craniofacial Research, 12, 149–158.

    CAS  PubMed  Google Scholar 

  • Riedl, R. J. (1978). Order in living organisms. New York: John Wiley and Sons.

    Google Scholar 

  • Riska, B. (1989). Composite traits, selection response, and evolution. Evolution,43(6), 1172–1191.

    Google Scholar 

  • Roseman, C. C., Kenney-Hunt, J. P., & Cheverud, J. M. (2009). Phenotypic integration without modularity: Testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evolutionary Biology, 36, 282–291.

    Google Scholar 

  • Sawin, P. B., Fox, R. R., & Latimer, H. B. (1970). Morphogenetic studies of the rabbit XLI. Gradients of correlation in the architecture of morphology. American Journal of Anatomy, 128(2), 137–145.

    CAS  PubMed  Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.

    Google Scholar 

  • Su, Z., Zeng, Y., & Gu, X. (2009). A preliminary analysis of gene pleiotropy estimated from protein sequences. Journal of Experimental Zoology (Molecular Development Evolution), (321B), 1–10.

  • Terentjev, P. V. (1931). Biometrische Untersuchungen übe die morphologischen Merkmale von Rana ridibunda Pall. (Amphibia, Salientia). Biometrika, 23, 23–51.

    Google Scholar 

  • True, J. R., & Haag, E. S. (2001) Developmental system drift and flexibility in evolutionary trajectories. Evolution & Development, 3(2), 109–119.

    CAS  Google Scholar 

  • Tyler, A. L., Asselbergs, F. W., Williams, S. M., & Moore, J. H. (2009). Shadows of complexity: What biological networks reveal about epistasis and pleiotropy. Bioessays, 31(2), 220–227.

    PubMed  Google Scholar 

  • Veitia R. A. (Ed.). (2006). The biology of genetic dominance. Georgetown, TX: Landes Bioscience.

    Google Scholar 

  • Wagner, G. P. (1989). Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics, 122, 223–234.

    CAS  PubMed  Google Scholar 

  • Wagner, G. P. (1990). A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Zeitschrift fur zoologische Systematik und Evolutionsforschung, 28, 48–61.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50(3):967–976.

    Google Scholar 

  • Wagner, G. P., Booth G., & Homayoun-Chaichia H. (1997). A population genetic theory of canalization. Evolution, 51, 329–347.

    Google Scholar 

  • Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud J. M. (2008). Pleiotropic scaling of gene effects and the ’cost of complexity’. Nature, 452(7186), 470–472.

    CAS  PubMed  Google Scholar 

  • Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser, & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 338–358). Chicago: The University of Chicago Press.

    Google Scholar 

  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.

    CAS  PubMed  Google Scholar 

  • Weiss, K. M., & Fullerton, S. M. (2000). Phenogenetic drift and the evolution of genotype–phenotype relationships. Theoretical Population Biology, 57, 187–195.

    CAS  PubMed  Google Scholar 

  • Whiteley, M. A., & Pearson, K. (1899). Data for the problem of evolution in man. I. A first study of the variability and correlation of the hand. Proceeding of the Royal Society, 65, 126–151.

    Google Scholar 

  • Willmore, K. E., Zelditch, M. L., Young, N., Ah-Seng, A, Lozanoff, S., & Hallgrimsson, B. (2006). Canalization and developmental stability in the Brachyrrhine mouse. Journal of Anatomy, 208(3), 361–372.

    PubMed  Google Scholar 

  • Winther, R. G. (2001). Varieties of modules: Kinds, levels, origins, and behaviors. Journal of Experimental Zoology, 291(2), 116–129.

    CAS  PubMed  Google Scholar 

  • Wolf, J. B. (2002). The geometry of phenotypic evolution in developmental hyperspace. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 15849–15851.

    CAS  PubMed  Google Scholar 

  • Wolf, J. B, Frankino, W. A., Agrawal, A. F., Brodie, E. D., 3rd., & Moore, A. J. (2001). Developmental interactions and the constituents of quantitative variation. Evolution, 55(2), 232–245.

    CAS  PubMed  Google Scholar 

  • Wolf, J. B., Pomp, D., Eisen, E. J., Cheverud, J. M., & Leamy, L. J. (2006). The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice. Evolution & Development, 8(5), 468–476.

    CAS  Google Scholar 

  • Young, R. L., & Badyaev, A. V. (2006). Evolutionary persistence of phenotypic integration : Influence of developmental and functional relationships on complex trait evolution. Evolution, 60(0), 1291–1299.

    PubMed  Google Scholar 

  • Zelditch, M. L. (1987). Evaluating models of developmental integration in the laboratory rat using confirmatory factor analysis. Systematic Zoology, 36, 368–380.

    Google Scholar 

  • Zelditch M. L., Wood A. R., Bonett R. M., & Swiderski D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution & Development, 10(6), 756–768.

    Google Scholar 

  • Zou, L., Sriswasdi, S., Ross, B., Missiuro, P. V., Liu, J., & Ge, H. (2008). Systematic analysis of pleiotropy in C. elegans early embryogenesis. PLoS Computational Biology, 4(2), e1000003.

    PubMed  Google Scholar 

Download references

Acknowledgements

I thank Fred Bookstein, Michael Coquerelle, Hans Nemeschkal, Mihaela Pavlicev, and Katrin Schaefer for thoughtful comments on the manuscript and Joanna Bryson, Werner Callebaut, Philipp Gunz, Christian Huber, Simon Huttegger, Will Lowe, Brian Metscher, and Gerd Müller for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Mitteroecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitteroecker, P. The Developmental Basis of Variational Modularity: Insights from Quantitative Genetics, Morphometrics, and Developmental Biology. Evol Biol 36, 377–385 (2009). https://doi.org/10.1007/s11692-009-9075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9075-6

Keywords

Navigation