Skip to main content
Log in

Recombination Rate and AT-content Show Opposite Correlations in Mammalian and Other Animal Genomes

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Genomes are often characterized by their genome size, recombination rate and nucleotide content. Negative correlations of recombination rate and AT-content have been reported for selected species. Here we investigate 26 completely sequenced animal genomes with respect to their genomic characteristics. After correcting for phylogenetic correlations we find significant correlations between these characters, showing that these do not evolve independently. The genomes of mammals differ when compared to other animal genomes. Correlations between AT-content and recombination rate are negative, but only for mammals. All other animals show a positive correlation for these characters. These results show that studies on the relationship between genome characteristics using single species might lead to the right conclusion, but cannot be applied as a general rule to all taxonomic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Birdsell, J. A. (2002). Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Molecular Biology and Evolution, 19(7), 1181–1197.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., Langley, C. H., & Stephan, W. (1986). The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics, 112(4), 947–962.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125(1), 1–15.

    Article  Google Scholar 

  • Fullerton, S. M., Carvalho, A. B., & Clark, A. G. (2001). Local rates of recombination are positively correlated with GC content in the human genome. Molecular Biology and Evolution, 18(6), 1139–1142.

    PubMed  CAS  Google Scholar 

  • Hagan, C. R., Sheffield, R. F., & Rudin, C. M. (2003). Human Alu element retrotransposition induced by genotoxic stress. Nature Genetics, 35(3), 219–220.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, B. (1980). Mechanisms of body temperature regulation in honeybees Apis mellifera 2. Regulation of thoracic temperature at high air temperatures. Journal of Experimental Biology, 85(1), 73–87.

    Google Scholar 

  • Hill, W. G., & Robertson, A. (1966). Effect of linkage on limits to artificial selection. Genetical Research, 8(3), 269–294.

    Article  PubMed  CAS  Google Scholar 

  • Kong, A., Gudbjartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson, B., Sigurdardottir, S., Barnard, J., Hallbeck, B., Masson, G., Shlien, A., Palsson, S. T., Frigge, M. L., Thorgeirsson, T. E., Gulcher, J. R., & Stefansson, K. (2002). A high-resolution recombination map of the human genome. Nature Genetics, 31(3), 241–247.

    PubMed  CAS  Google Scholar 

  • Kumar, S., & Nei, M. (2000). Molecular phylogenetics. Oxford: Oxford University Press.

    Google Scholar 

  • Lenormand, T., & Dutheil, J. (2005). Recombination difference between sexes: A role for haploid selection. PLoS Biology, 3(3), 396–403.

    Article  CAS  Google Scholar 

  • Lynch, M. (2006). The origins of eukaryotic gene structure. Molecular Biology and Evolution, 23(2), 450–468.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. (2007). The origins of genome architecture. Sunderland, MA: Sinauer Ass.

    Google Scholar 

  • Lynch, M., & Conery, J. S. (2003). The origins of genome complexity. Science, 302(5649), 1401–1404.

    Article  PubMed  CAS  Google Scholar 

  • Martins, E. P. (2004). COMPARE, Version 4.6b. Computer programs for the statistical analysis of comparative data. (http://compare.bio.indiana.edu/).

  • McInerney, J. O. (1998). GCUA (general codon usage analysis). Bioinformatics, 14(4), 372–373.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, J., & Duret, L. (2004). Recombination drives the evolution of GC-content in the human genome. Molecualr Biology and Evolution, 21(6), 984–990.

    Article  CAS  Google Scholar 

  • Pagel, M., & Meade, A. (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systematic Biology 53(4), 571–581.

    Google Scholar 

  • Ross-Ibarra, J. (2007). Genome size and recombination in angiosperms: A second look. Journal of Evolutionary Biology, 20(2), 800–806.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C. A. (1971). Genetic organization of chromosomes. Annual Review of Genetics, 5, 237–256.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, A. E. (1998). Genome size and GC-percent in vertebrates as determined by flow cytometry: The triangular relationship. Cytometry, 31(2), 100–109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Michael G. Lattorff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lattorff, H.M.G., Moritz, R.F.A. Recombination Rate and AT-content Show Opposite Correlations in Mammalian and Other Animal Genomes. Evol Biol 35, 146–149 (2008). https://doi.org/10.1007/s11692-008-9019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9019-6

Keywords

Navigation