Skip to main content
Log in

Estimation de la consommation pic d’oxygène par la perception de l’effort chez des patients obèses et diabétiques de type 2

Estimation of peak oxygen uptake from ratings of perceived exertion in obese patients with a type 2 diabetes

  • Article Original / Original Article
  • Published:
Obésité

Résumé

Objectifs

Les objectifs étaient: 1) d’examiner la validité des valeurs de perception de l’effort (RPE) à prédire la consommation pic d’oxygène (.VO2pic) des patients obèses et diabétiques durant une épreuve d’effort sousmaximale, et 2) de comparer la précision des prédictions obtenues à partir des RPE ≤ 15 et RPE ≤ 17.

Matériels et méthodes

Dix-sept patientes obèses et diabétiques de type 2 réalisaient une épreuve d’effort maximale, durant laquelle les consommations d’oxygène (.VO2) et les RPE étaient mesurées. Les régressions linéaires individuelles entre.VO2 et RPE étaient extrapolées à RPE = 20 afin de prédire.VO2pic.

Résultats

Les.VO2pic mesurées (12,7 ± 3,6 ml.kg−1.min−1) n’étaient pas significativement différentes des.V O2pic estimées par les RPE ≤ 15 et RPE ≤ 17 (13,1 ± 3,7 et 13,3 ± 3,8 ml.kg−1.min−1, respectivement). Les.V O2pic mesurées étaient corrélées aux.VO2pic estimées par les RPE ≤ 15 et les RPE ≤ 17 (r = 0,89 et r = 0,92, respectivement). Les limites d’agrément étaient de −0,4 ± 3,4 et −0,6 ± 3,0 ml.kg−1.min−1 pour les prédictions à partir des RPE ≤ 15 et RPE ≤ 17, respectivement.

Conclusion

Ces résultats suggèrent que les RPE ≤ 15 fournissent une prédiction précise de la.VO2pic des patientes obèses et diabétiques. Cependant, la précision des prédictions était améliorée lorsque les.VO2pic étaient prédites par les RPE ≤ 17. En conséquence, les RPE peuvent être utilisées pour prédire la.VO2pic, et ainsi diminuer le risque de complications cardiovasculaires durant une épreuve d’effort.

Abstract

Objectives

The main objectives of this study were: 1) to assess the validity of predicting peak oxygen uptake (.VO2peak) from ratings of perceived exertion (RPE) during a sub-maximal graded exercise test (GXT), in obese patients with diabetes, and 2) to compare the accuracy of predictions obtained from RPE ≤ 15 and RPE ≤ 17. Materials and methods: Seventeen obese women with type 2 diabetes performed GXT to volitional exhaustion, in which oxygen uptake (.VO2) and RPE were measured. Individual linear regressions between.VO2 and RPE, that were collected during the first stages of GXT (RPE ≤ 15 and RPE ≤ 17), were extrapolated to RPE = 20 in order to predict.VO2peak. Results: Actual (12.7 ± 3.6 ml.min−1.kg−1) and predicted.VO2peak from RPE ≤ 15 and RPE ≤ 17 (13.1 ± 3.7 and 13.3 ± 3.8 ml.min−1.kg−1, respectively) were not significantly different. The actual.V O2peak were significantly correlated to the predicted.VO2peak from RPE ≤ 15 and RPE ≤ 17 (R = 0.89 and R = 0.92, respectively). The 95% limits of agreement analysis were −0.4 ± 3.4 and −0.6 ± 3.0 ml.min−1.kg−1 for the predictions from RPE ≤ 15 and RPE ≤ 17, respectively.

Conclusion

Results suggested that the RPE ≤ 15 provide accurate.V O2peak prediction in obese women with type 2 diabetes. However, the accurate of predictions was improved when the.VO2peak was predicted from RPE ≤ 17. Consequently, RPE may be used to predict.VO2peak and to decrease the risk of cardio-vascular complications during GXT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Sigal RJ, Kenny GP, Wasserman DH, et al (2006) Physical activity/exercise and type 2 diabetes. Diabetes Care 29:1433–1438

    Article  PubMed  Google Scholar 

  2. Thompson P (2001) Cardiovascular risks of exercise: avoiding sudden death and myocardial infarction. Phys Sportsmed 29:1–8

    Google Scholar 

  3. Robertson RJ, Noble BJ (1997) Perception of physical exertion: methods, mediators, and applications. Exerc Sport Sci Rev 25:407–452

    Article  PubMed  CAS  Google Scholar 

  4. Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98

    PubMed  CAS  Google Scholar 

  5. Borg G (1998) Perceived exertion. In: Borg G (ed) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign, USA, pp 2–9

    Google Scholar 

  6. Coquart JBJ, Legrand R, Robin S, et al (2009) Influence of successive bouts of fatiguing exercise on perceptual and physiological markers during an incremental exercise test. Psychophysiology 46:209–216

    Article  PubMed  Google Scholar 

  7. Noble BJ, Robertson RJ (1996) Perceived exertion. Human Kinetics, Champaign, USA

    Google Scholar 

  8. Coquart JBJ, Lemaire C, Dubart AE, et al (2010) Prediction of peak oxygen uptake from sub-maximal ratings of perceived exertion elicited during a graded exercise test in obese women. Eur J Appl Physiol 110:645–649

    Article  PubMed  Google Scholar 

  9. Davies RC, Rowlands AV, Eston RG (2008) The prediction of maximal oxygen uptake from submaximal ratings of perceived exertion elicited during the multistage fitness test. Br J Sports Med 42:1006–1010

    Article  PubMed  CAS  Google Scholar 

  10. Faulkner J, Parfitt G, Eston R (2007) Prediction of maximal oxygen uptake from the ratings of perceived exertion and heart rate during a perceptually-regulated sub-maximal exercise test in active and sedentary participants. Eur J Appl Physiol 101:397–407

    Article  PubMed  Google Scholar 

  11. Eston RG, Faulkner JA, Mason EA, Parfitt G (2006) The validity of predicting maximal oxygen uptake from perceptually regulated graded exercise tests of different durations. Eur J Appl Physiol 97:535–541

    Article  PubMed  CAS  Google Scholar 

  12. Eston RG, Lamb KL, Parfitt G, King N (2005) The validity of predicting maximal oxygen uptake from a perceptually-regulated graded exercise test. Eur J Appl Physiol 94:221–227

    Article  PubMed  Google Scholar 

  13. Eston R, Lambrick D, Sheppard K, Parfitt G (2008) Prediction of maximal oxygen uptake in sedentary males from a perceptually regulated, sub-maximal graded exercise test. J Sports Sci 26:131–139

    Article  PubMed  Google Scholar 

  14. Faulkner J, Eston R (2007) Overall and peripheral ratings of perceived exertion during a graded exercise test to volitional exhaustion in individuals of high and low fitness. Eur J Appl Physiol 101:613–620

    Article  PubMed  Google Scholar 

  15. Shephard RJ, Vandewalle H, Gil V, et al (1992) Respiratory, muscular, and overall perceptions of effort: the influence of hypoxia and muscle mass. Med Sci Sports Exerc 24:556–567

    PubMed  CAS  Google Scholar 

  16. Coquart JBJ, Lensel G, Garcin M (2009) Perception de l’effort chez l’enfant et l’adolescent: mesure et intérêts. Science & Sports 3–4:137–145

    Article  Google Scholar 

  17. Robertson RJ (2004) The OMNI picture system of perceived exertion. In: Robertson RJ (ed) Perceived exertion for practitioners: rating effort with the OMNI picture system. Human Kinetics, Champaign, USA, pp 9–20

    Google Scholar 

  18. Skinner JS, Hutsler R, Bergsteinova V, Buskirk ER (1973) The validity and reliability of a rating scale of perceived exertion. Med Sci Sports 5:94–96

    PubMed  CAS  Google Scholar 

  19. Pomerleau M, Imbeault P, Parker T, Doucet E (2004) Effects of exercise intensity on food intake and appetite in women. Am J Clin Nutr 80:1230–1236

    PubMed  CAS  Google Scholar 

  20. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  21. Fox SM, Naughton JP, Haskell WL (1971) Physical activity and the prevention of coronary heart disease. Ann Clin Res 3:404–432

    PubMed  Google Scholar 

  22. Brawner CA, Ehrman KJ, Schairer JR, et al (2004) Predicting maximum heart rate among patients with coronary heart disease receiving adrenergic blockade therapy. Am Heart J 148:910–914

    Article  PubMed  CAS  Google Scholar 

  23. López-Jiménez F, Cortés-Bergoderi M (2011) Obesity and the Heart. Rev Esp Cardiol 64:140–149

    Article  PubMed  Google Scholar 

  24. Borg G (1998) Borg’s Perceived exertion and pain scales. Human Kinetics, Champaign, USA

    Google Scholar 

  25. Pfeiffer KA, Pivarnik JM, Womack CJ, et al (2002) Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Med Sci Sports Ex 34:2057–2061

    Article  Google Scholar 

  26. Colberg SR, Swain DP, Vinik AI (2003) Use of heart rate reserve and rating of perceived exertion to prescribe exercise intensity in diabetic autonomic neuropathy. Diabetes Care 26:986–990

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. J. Coquart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coquart, J.B.J., Garcin, M., Grosbois, J.M. et al. Estimation de la consommation pic d’oxygène par la perception de l’effort chez des patients obèses et diabétiques de type 2. Obes 6, 98–104 (2011). https://doi.org/10.1007/s11690-011-0261-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-011-0261-1

Mots clés

Keywords

Navigation