Skip to main content

Advertisement

Log in

Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections

  • Review
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections.

Methods

In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature.

Results

Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host–parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo.

Conclusion

In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen D, Xu T, Wang S et al (2020) Liquid biopsy applications in the clinic. Mol Diagnosis Ther 24:125–132. https://doi.org/10.1007/s40291-019-00444-8

    Article  CAS  Google Scholar 

  2. Mader S, Pantel K (2017) Liquid biopsy: current status and future perspectives. Oncol Res Treat 40:404–408. https://doi.org/10.1159/000478018

    Article  CAS  PubMed  Google Scholar 

  3. Weerakoon KG, McManus DP (2016) Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol 32:378–391. https://doi.org/10.1016/j.pt.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  4. Martins I, Ribeiro IP, Jorge J et al (2021) Liquid biopsies: applications for cancer diagnosis and monitoring. Genes (Basel) 12:1–20

    Article  Google Scholar 

  5. Khier S, Lohan L (2018) Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Futur Sci OA. https://doi.org/10.4155/fsoa-2017-0140

    Article  Google Scholar 

  6. Nyaruaba R, Xiong J, Mwaliko C et al (2020) Development and evaluation of a single dye duplex droplet digital PCR assay for the rapid detection and quantification of mycobacterium tuberculosis. Microorganisms. https://doi.org/10.3390/microorganisms8050701

    Article  PubMed Central  PubMed  Google Scholar 

  7. Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in egfrmutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20:1698–1705. https://doi.org/10.1158/1078-0432.CCR-13-2482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. https://doi.org/10.1186/s13578-019-0282-2

    Article  PubMed Central  PubMed  Google Scholar 

  9. Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ (2018) The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev 93:1649–1683. https://doi.org/10.1111/brv.12413

    Article  PubMed  Google Scholar 

  10. Thierry AR, El MS, Gahan PB et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastas Rev. https://doi.org/10.1007/s10555-016-9629-x

    Article  Google Scholar 

  11. Cree IA, Uttley L, Buckley Woods H et al (2017) The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review. BMC Cancer 17:1–17. https://doi.org/10.1186/s12885-017-3693-7

    Article  CAS  Google Scholar 

  12. Su Y, Fang H, Jiang F (2016) Integrating DNA methylation and microRNA biomarkers in sputum for lung cancer detection. Clin Epigenet. https://doi.org/10.1186/s13148-016-0275-5

    Article  Google Scholar 

  13. Foj L, Ferrer F, Serra M et al (2017) Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate 77:573–583. https://doi.org/10.1002/pros.23295

    Article  CAS  PubMed  Google Scholar 

  14. Pentsova EI, Shah RH, Tang J et al (2016) Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol 34:2404–2415. https://doi.org/10.1200/JCO.2016.66.6487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Husain H, Nykin D, Bui N et al (2017) Cell-free DNA from ascites and pleural effusions: molecular insights into genomic aberrations and disease biology. Mol Cancer Ther 16:948–955. https://doi.org/10.1158/1535-7163.MCT-16-0436

    Article  CAS  PubMed  Google Scholar 

  16. Kustanovich A, Schwartz R, Peretz T, Grinshpun A (2019) Life and death of circulating cell-free DNA Life and death of circulating cell-free DNA. Cancer Biol Ther 20:1057–1067. https://doi.org/10.1080/15384047.2019.1598759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yu J, Gu G, Ju S (2014) Recent advances in clinical applications of circulating cell-free DNA integrity. Lab Med 45:6–12. https://doi.org/10.1309/LMKKOX6UJZQGW0EA

    Article  CAS  PubMed  Google Scholar 

  18. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581:795–799. https://doi.org/10.1016/j.febslet.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  19. Breitbach S, Tug S, Simon P (2012) Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sport Med 42:565–586

    Article  Google Scholar 

  20. Wagner J (2012) Free DNA—new potential analyte in clinical laboratory diagnostics? Biochem Medica 22:24–38. https://doi.org/10.11613/BM.2012.004

    Article  CAS  Google Scholar 

  21. Sun Y, An K, Yang C (2019) Circulating circulating cell-free. InTechOpen. https://doi.org/10.5772/intechopen.80730

    Article  Google Scholar 

  22. Yu SCY, Chan KCA, Zheng YWL et al (2014) Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. Proc Natl Acad Sci USA 111:8583–8588. https://doi.org/10.1073/pnas.1406103111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Archer J, Lacourse JE, Webster BL, Stothard JR (2020) An update on non-invasive urine diagnostics for human-infecting parasitic helminths: what more could be done and how? Parasitology 147:873–888. https://doi.org/10.1017/S0031182019001732

    Article  PubMed  Google Scholar 

  24. Elazezy M, Joosse SA (2018) Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J 16:370–378. https://doi.org/10.1016/j.csbj.2018.10.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fici P (2019) Cell-free DNA in the liquid biopsy context: role and differences between ctDNA and CTC marker in cancer management. Methods in molecular biology. Humana Press Inc., pp 47–73. https://doi.org/10.1007/978-1-4939-8973-7_4

    Chapter  Google Scholar 

  26. Akter S, Nakao R, Imasato Y et al (2019) Genomics potential of cell-free DNA as a screening marker for parasite infections in dog. Genomics 111:906–912. https://doi.org/10.1016/j.ygeno.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  27. Mharakurwa S, Simoloka C, Thuma PE et al (2006) PCR detection of Plasmodium falciparum in human urine and saliva samples. Malar J 5:1–7. https://doi.org/10.1186/1475-2875-5-103

    Article  CAS  Google Scholar 

  28. Singh R, Singh DP, Gupta R et al (2014) Comparison of three PCR-based assays for the non-invasive diagnosis of malaria: detection of Plasmodium parasites in blood and saliva. Eur J Clin Microbiol Infect Dis 33:1631–1639. https://doi.org/10.1007/s10096-014-2121-z

    Article  CAS  PubMed  Google Scholar 

  29. Najafabadi ZG, Oormazdi H, Akhlaghi L et al (2014) Mitochondrial PCR-based malaria detection in saliva and urine of symptomatic patients. Trans R Soc Trop Med Hyg 108:358–362. https://doi.org/10.1093/trstmh/tru061

    Article  CAS  Google Scholar 

  30. Nwakanma DC, Gomez-Escobar N, Walther M et al (2009) Quantitative detection of Plasmodium falciparum DNA in saliva, blood, and urine. J Infect Dis 199:1567–1574. https://doi.org/10.1086/598856

    Article  PubMed  Google Scholar 

  31. Buppan P, Putaporntip C, Pattanawong U et al (2010) Comparative detection of Plasmodium vivax and Plasmodium falciparum DNA in saliva and urine samples from symptomatic malaria patients in a low endemic area. Malar J 9:1–7. https://doi.org/10.1186/1475-2875-9-72

    Article  CAS  Google Scholar 

  32. Velázquez EB, Rivero R, De RAM et al (2014) Predictive role of polymerase chain reaction in the early diagnosis of congenital Trypanosoma cruzi infection. Acta Trop 137:195–200. https://doi.org/10.1016/j.actatropica.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  33. Lescure FX, Le Loup G, Freilij H et al (2010) Chagas disease: changes in knowledge and management. Lancet Infect Dis 10:556–570. https://doi.org/10.1016/S1473-3099(10)70098-0

    Article  PubMed  Google Scholar 

  34. De Ruiter CM, Van Der Veer C, Leeflang MMG et al (2014) Molecular tools for diagnosis of visceral leishmaniasis: systematic review and meta-analysis of diagnostic test accuracy. J Clin Microbiol 52:3147–3155. https://doi.org/10.1128/JCM.00372-14

    Article  PubMed Central  PubMed  Google Scholar 

  35. Robert-Gangneux F, Dardé ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25:264–296. https://doi.org/10.1128/CMR.05013-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fuentes I, Rodriguez M, Domingo CJ et al (1996) Urine sample used for congenital toxoplasmosis diagnosis by PCR. J Clin Microbiol 34:2368–2371. https://doi.org/10.1128/jcm.34.10.2368-2371.1996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Parija S, Chaya D (2014) Performance of polymerase chain reaction for the diagnosis of cystic echinococcosis using serum, urine, and cyst fluid samples. Trop Parasitol 4:43. https://doi.org/10.4103/2229-5070.129164

    Article  PubMed Central  PubMed  Google Scholar 

  38. Britton S, Cheng Q, Grigg MJ et al (2016) Sensitive detection of Plasmodium vivax using a high-throughput, colourimetric loop mediated isothermal amplification (HtLAMP) platform: a potential novel tool for malaria elimination. PLoS Negl Trop Dis 10:1–16. https://doi.org/10.1371/journal.pntd.0004443

    Article  CAS  Google Scholar 

  39. Tao D, McGill B, Hamerly T et al (2019) A saliva-based rapid test to quantify the infectious subclinical malaria parasite reservoir. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan4479

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lloyd YM, Esemu LF, Antallan J et al (2018) PCR-based detection of Plasmodium falciparum in saliva using mitochondrial cox3 and varATS primers. Trop Med Health 46:1–6. https://doi.org/10.1186/s41182-018-0100-2

    Article  Google Scholar 

  41. Pomari E, Silva R, Moro L, Marca G, Perandin F, Verra F, Bisoffi Z, Piubelli C (2020) Droplet digital PCR for the detection of Plasmodium falciparum DNA in whole blood and serum: a comparative analysis with other molecular methods. Pathogens 9:478

    Article  CAS  PubMed Central  Google Scholar 

  42. Vera IM, Kessler A, Ting LM et al (2020) Plasma cell-free DNA predicts pediatric cerebral malaria severity. JCI Insight. https://doi.org/10.1172/jci.insight.136279

    Article  PubMed Central  PubMed  Google Scholar 

  43. Seesui K, Imtawil K, Chanetmahun P et al (2018) An alternative method for extracting plasmodium DNA from EDTA whole blood for malaria diagnosis. Korean J Parasitol 56:25–32. https://doi.org/10.3347/kjp.2018.56.1.25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Corrado M, Pilotte N, Zulch M et al (2020) Field evaluation of DNA detection of human filarial and malaria parasites using mosquito excreta/feces. Plos Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0008175

    Article  Google Scholar 

  45. Hede MS, Fjelstrup S, Lötsch F et al (2018) Detection of the malaria causing Plasmodium parasite in saliva from infected patients using Topoisomerase I activity as a biomarker. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22378-7

    Article  CAS  Google Scholar 

  46. Vieira F, De AS, Gomes LR et al (2018) Frozen blood clots can be used for the diagnosis of distinct Plasmodium species in man and non-human primates from the Brazilian Atlantic Forest. Malar J. https://doi.org/10.1186/s12936-018-2485-0

    Article  PubMed Central  PubMed  Google Scholar 

  47. Cuadros J, Ramírez AM, González IJ et al (2017) LAMP kit for diagnosis of non-falciparum malaria in Plasmodium ovale infected patients. Malar J. https://doi.org/10.1186/s12936-016-1669-8

    Article  PubMed Central  PubMed  Google Scholar 

  48. De Almeida ME, Koru O, Steurer F et al (2017) Detection and differentiation of Leishmania spp. In clinical specimens by use of a SYBR green-based real-time PCR assay. J Clin Microbiol 55:281–290. https://doi.org/10.1128/JCM.01764-16

    Article  PubMed  Google Scholar 

  49. De RMB, Herrera HM, Carvalho CME et al (2017) Detection of Leishmania spp. in bats from an area of Brazil endemic for visceral Leishmaniasis. Transbound Emerg Dis. https://doi.org/10.1111/tbed.12597

    Article  Google Scholar 

  50. Leonel JAF, Tannihão B, Arantes JA et al (2021) Detection of Leishmania infantum DNA in blood samples of horses (Equus caballus) and donkeys (Equus asinus) by PCR. Rev Inst Med Trop Sao Paulo 63:1–7. https://doi.org/10.1590/s1678-9946202163012

    Article  CAS  Google Scholar 

  51. de Costa Lima MS, Hartkopf ACL, de Souza Tsujisaki RA et al (2018) Isolation and molecular characterization of Leishmania infantum in urine from patients with visceral leishmaniasis in Brazil. Acta Trop 178:248–251. https://doi.org/10.1016/j.actatropica.2017.12.011

    Article  CAS  Google Scholar 

  52. Mirzaei A, Ahmadipour F, Cannet A et al (2018) Immunodetection and molecular determination of visceral and cutaneous Leishmania infection using patients’ urine. Infect Genet Evol 63:257–268. https://doi.org/10.1016/j.meegid.2018.05.021

    Article  CAS  PubMed  Google Scholar 

  53. Veland N, Espinosa D, Valencia BM et al (2011) Polymerase chain reaction detection of leishmania kDNA from the urine of Peruvian patients with cutaneous and mucocutaneous leishmaniasis. Am J Trop Med Hyg 84:556–561. https://doi.org/10.4269/ajtmh.2011.10-0556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mayta H, Romero YK, Pando A et al (2019) Improved DNA extraction technique from clot for the diagnosis of Chagas disease. PLoS Negl Trop Dis 13:1–11. https://doi.org/10.1371/journal.pntd.0007024

    Article  CAS  Google Scholar 

  55. Madrigal AG, Marcus R, Gilman R et al (2019) Detection of parasite-derived transrenal DNA for the diagnosis of chronic Trypanosoma cruzi infection. medRxiv. https://doi.org/10.1101/19010934

    Article  Google Scholar 

  56. Besuschio SA, Picado A, Muñoz-Calderón A et al (2020) Trypanosoma cruzi loop-mediated isothermal amplification (Trypanosoma cruzi loopamp) kit for detection of congenital, acute and chagas disease reactivation. PLoS Negl Trop Dis 14:1–17. https://doi.org/10.1371/journal.pntd.0008402

    Article  CAS  Google Scholar 

  57. Matovu E, Katiti D, Kitibwa A et al (2020) Experimental parasitology optimisation of template preparation and laboratory evaluation of the Loopamp TM Trypanosoma brucei kit for detection of parasite DNA in blood. Exp Parasitol 211:107844. https://doi.org/10.1016/j.exppara.2020.107844

    Article  CAS  PubMed  Google Scholar 

  58. Ngotho M, Kagira JM, Gachie BM et al (2015) Loop mediated isothermal amplification for detection of Trypanosoma brucei gambiense in urine and saliva samples in nonhuman primate model. Biomed Res Int. https://doi.org/10.1155/2015/867846

    Article  PubMed Central  PubMed  Google Scholar 

  59. Haque R, Kabir M, Noor Z et al (2010) Diagnosis of amebic liver abscess and amebic colitis by detection of Entamoeba histolytica DNA in blood, urine, and saliva by a real-time PCR assay. J Clin Microbiol 48:2798–2801. https://doi.org/10.1128/JCM.00152-10

    Article  PubMed Central  PubMed  Google Scholar 

  60. Wang D, Hu Y, Li T et al (2017) Diagnosis of Pneumocystis jirovecii pneumonia with serum cell-free DNA in non-HIV-infected immunocompromised patients. Oncotarget 8:71946–71953. https://doi.org/10.18632/oncotarget.18037

    Article  PubMed Central  PubMed  Google Scholar 

  61. Weerakoon KG, Gordon CA, Williams GM et al (2017) Droplet digital PCR diagnosis of human Schistosomiasis: parasite cell-free DNA detection in diverse clinical samples. J Infect Dis 216:1611–1622. https://doi.org/10.1093/infdis/jix521

    Article  CAS  PubMed  Google Scholar 

  62. Ullah H, Qadeer A, Giri BR (2020) Detection of circulating cell-free DNA to diagnose Schistosoma japonicum infection. Acta Trop. https://doi.org/10.1016/j.actatropica.2020.10560

    Article  PubMed Central  PubMed  Google Scholar 

  63. Diab RG, Mady RF, Tolba MM, Ghazala RA (2019) Urinary circulating DNA and circulating antigen for diagnosis of schistosomiasis mansoni: a field study. Trop Med Int Heal 24:371–378. https://doi.org/10.1111/tmi.13193

    Article  CAS  Google Scholar 

  64. Enk MJ, Oliveira e Silva G, Rodrigues NB (2012) Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS ONE. https://doi.org/10.1371/journal.pone.0038947

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kato-Hayashi N, Yasuda M, Yuasa J et al (2013) Use of cell-free circulating schistosome DNA in serum, urine, semen, and saliva to monitor a case of refractory imported schistosomiasis hematobia. J Clin Microbiol 51:3435–3438. https://doi.org/10.1128/JCM.01219-13

    Article  PubMed Central  PubMed  Google Scholar 

  66. Aryaeipour M, Kazemi B, Bozorgomid A et al (2020) Detection cell-free DNA (CFDNA) using nested-PCR as a diagnosis tool for human fascioliasis infection. Iran J Public Health 49:1148–1156. https://doi.org/10.18502/ijph.v49i6.3367

    Article  Google Scholar 

  67. Toribio L, Santivanez S, Scott AL et al (2020) Diagnostic urinary cfDNA detected in human cystic echinococcosis. Mol Biochem Parasitol. https://doi.org/10.1016/j.molbiopara.2020.111314

    Article  PubMed Central  PubMed  Google Scholar 

  68. Moradi M, Meamar AR, Akhlaghi L et al (2019) Detection and genetic characterization of Echinococcus granulosus mitochondrial DNA in serum and formalin-fixed paraffin embedded cyst tissue samples of cystic echinococcosis patients. PLoS ONE 14:1–16. https://doi.org/10.1371/journal.pone.0224501

    Article  CAS  Google Scholar 

  69. Wan Z, Peng X, Ma L et al (2020) Targeted sequencing of genomic repeat regions detects circulating cell-free Echinococcus DNA. PLoS Negl Trop Dis 14:1–21. https://doi.org/10.1371/journal.pntd.0008147

    Article  CAS  Google Scholar 

  70. Hanks E, Todd H, Albaladejo JP et al (2020) A novel technique for retrospective genetic analysis of the response to vaccination or infection using cell-free DNA from archived sheep serum and plasma. Vet Res. https://doi.org/10.1186/s13567-020-0737-9

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ji J, Li B, Li J et al (2020) Comprehensive characterization of plasma cell-free echinococcus spp. DNA in echinococcosis patients using ultra-high-throughput sequencing. PLoS Negl Trop Dis 14:1–20. https://doi.org/10.1371/journal.pntd.0008148

    Article  CAS  Google Scholar 

  72. Fan H, Gai W, Zhang L et al (2020) Parasite circulating free DNA in the blood of alveolar echinococcosis patients as a diagnostic and treatment-status indicator. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1679

    Article  PubMed Central  PubMed  Google Scholar 

  73. Baraquin A, Hervouet E, Richou C et al (2018) Circulating cell-free DNA in patients with alveolar echinococcosis. Mol Biochem Parasitol 222:14–20. https://doi.org/10.1016/j.molbiopara.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  74. Toribio L, Romano M, Scott AL et al (2019) Detection of Taenia solium DNA in the urine of neurocysticercosis patients. Am J Trop Med Hyg 100:327–329. https://doi.org/10.4269/ajtmh.18-0706

    Article  CAS  PubMed  Google Scholar 

  75. Yera H, Dupont D, Houze S et al (2011) Confirmation and follow-up of neurocysticercosis by real-time PCR in cerebrospinal fluid samples of patients living in France. J Clin Microbiol 49:4338–4340. https://doi.org/10.1128/JCM.05839-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Javanian M, Gorgani-firouzjaee T, Kalantrai N (2019) Comparison of ELISA and PCR of the 18S rRNA gene for detection of human strongyloidiasis using serum sample comparison of ELISA and PCR of the 18S rRNA gene for detection of human strongyloidiasis using serum sample. Infect Dis (Auckl). https://doi.org/10.1080/23744235.2019.1575978

    Article  Google Scholar 

  77. Krolewiecki AJ, Koukounari A, Romano M et al (2018) Transrenal DNA-based diagnosis of Strongyloides stercoralis (Grassi, 1879) infection: Bayesian latent class modeling of test accuracy. PLoS Negl Trop Dis 12:1–11. https://doi.org/10.1371/journal.pntd.0006550

    Article  CAS  Google Scholar 

  78. Wang J, Chen J, Sen S (2015) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231:25–30. https://doi.org/10.1002/jcp.25056

    Article  CAS  Google Scholar 

  79. Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Juzenas S, Venkatesh G, Hübenthal M et al (2017) A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 45:9290–9301. https://doi.org/10.1093/nar/gkx706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Condrat CE, Thompson DC, Barbu MG et al (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:276. https://doi.org/10.3390/cells9020276

    Article  CAS  PubMed Central  Google Scholar 

  82. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Publ Gr. https://doi.org/10.1038/nrm3838

    Article  Google Scholar 

  83. Paul S, Ruiz-Manriquez LM, Serrano-Cano FI et al (2020) Human microRNAs in host–parasite interaction: a review. 3 Biotech 10:1–16. https://doi.org/10.1007/s13205-020-02498-6

    Article  Google Scholar 

  84. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. https://doi.org/10.1038/ncb2210.MicroRNAs

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed Central  PubMed  Google Scholar 

  86. Cortez MA, Bueso-Ramos C, Ferdin J et al (2011) MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477. https://doi.org/10.1038/nrclinonc.2011.76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Alizadeh Z, Mahami-Oskouei M, Spotin A et al (2020) Parasite-derived microRNAs in plasma as novel promising biomarkers for the early detection of hydatid cyst infection and post-surgery follow-up. Acta Trop 202:105255. https://doi.org/10.1016/j.actatropica.2019.105255

    Article  CAS  PubMed  Google Scholar 

  88. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/j.bios.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  89. Tribolet L, Kerr E, Cowled C et al (2020) MicroRNA biomarkers for infectious diseases: from basic research to biosensing. Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.01197

    Article  Google Scholar 

  90. Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer-new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479. https://doi.org/10.1016/j.ceb.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  91. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675. https://doi.org/10.1111/j.1365-2141.2008.07077.x

    Article  PubMed  Google Scholar 

  92. Zhang J, Zhao H, Gao Y, Zhang W (2012) Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta-Rev Cancer 1826:32–43. https://doi.org/10.1016/j.bbcan.2012.03.001

    Article  CAS  Google Scholar 

  93. Pockar S, Globocnik Petrovic M, Peterlin B, Vidovic Valentincic N (2019) MiRNA as biomarker for uveitis—a systematic review of the literature. Gene 696:162–175. https://doi.org/10.1016/j.gene.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  94. Cai P, Piao X, Liu S et al (2013) MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection. PLoS ONE 8:1–12. https://doi.org/10.1371/journal.pone.0067037

    Article  CAS  Google Scholar 

  95. Hoy AM, Lundie RJ, Ivens A et al (2014) Parasite-derived MicroRNAs in host serum as novel biomarkers of Helminth infection. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0002701

    Article  PubMed Central  PubMed  Google Scholar 

  96. Cai P, Gobert GN, McManus DP (2016) MicroRNAs in parasitic Helminthiases: current status and future perspectives. Trends Parasitol 32:71–86. https://doi.org/10.1016/j.pt.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  97. Makarova JA, Shkurnikov MU, Wicklein D et al (2016) Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 51:33–49. https://doi.org/10.1016/j.proghi.2016.06.001

    Article  PubMed  Google Scholar 

  98. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  PubMed Central  PubMed  Google Scholar 

  99. Liu Q, Tuo W, Gao H, Zhu XQ (2010) MicroRNAs of parasites: current status and future perspectives. Parasitol Res 107:501–507. https://doi.org/10.1007/s00436-010-1927-6

    Article  PubMed  Google Scholar 

  100. Zheng Y, Cai X, Bradley JE (2013) MicroRNAs in parasites and parasite infection. RNA Biol 10:371–379. https://doi.org/10.4161/rna.23716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Prucca CG, Slavin I, Quiroga R et al (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456:750–754. https://doi.org/10.1038/nature07585

    Article  CAS  PubMed  Google Scholar 

  102. Manzano-Román R, Siles-Lucas M (2012) MicroRNAs in parasitic diseases: potential for diagnosis and targeting. Mol Biochem Parasitol 186:81–86. https://doi.org/10.1016/j.molbiopara.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  103. Militello KT, Refour P, Comeaux CA, Duraisingh MT (2008) Antisense RNA and RNAi in protozoan parasites: working hard or hardly working? Mol Biochem Parasitol 157:117–126. https://doi.org/10.1016/j.molbiopara.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  104. Jia Q, Lin K, Liang J et al (2010) Discovering conserved insect microRNAs from expressed sequence tags. J Insect Physiol 56:1763–1769. https://doi.org/10.1016/j.jinsphys.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  105. Jia B, Chang Z, Wei X et al (2014) Plasma microRNAs are promising novel biomarkers for the early detection of Toxoplasma gondii infection. Parasit Vectors 7:1–8. https://doi.org/10.1186/1756-3305-7-433

    Article  CAS  Google Scholar 

  106. Chamnanchanunt S, Kuroki C, Desakorn V et al (2015) Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Exp Parasitol 155:19–25. https://doi.org/10.1016/j.exppara.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  107. Plieskatt J, Rinaldi G, Feng Y et al (2015) A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma. BMC Cancer 15:1–15. https://doi.org/10.1186/s12885-015-1270-5

    Article  CAS  Google Scholar 

  108. Silakit R, Loilome W, Yongvanit P et al (2014) Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. J Hepatobiliary Pancreat Sci 21:864–872. https://doi.org/10.1002/jhbp.145

    Article  PubMed  Google Scholar 

  109. He X, Sai X, Chen C et al (2013) Host serum miR-223 is a potential new biomarker for Schistosoma japonicum infection and the response to chemotherapy. Parasit Vectors 6:1–8. https://doi.org/10.1186/1756-3305-6-272

    Article  CAS  Google Scholar 

  110. Lasjerdi Z, Ghanbarian H, Mohammadi Yeganeh S et al (2020) Comparative expression profile analysis of apoptosis-related mirna and its target gene in leishmania major infected macrophages. Iran J Parasitol 15:332–340. https://doi.org/10.18502/ijpa.v15i3.4197

    Article  PubMed Central  PubMed  Google Scholar 

  111. Guerfali FZ, Laouini D, Guizani-Tabbane L et al (2008) Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE. BMC Genomics 9:1–18. https://doi.org/10.1186/1471-2164-9-238

    Article  CAS  Google Scholar 

  112. Bazzoni F, Rossato M, Fabbri M et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 106:5282–5287. https://doi.org/10.1073/pnas.0810909106

    Article  PubMed Central  PubMed  Google Scholar 

  113. Lemaire J, Mkannez G, Guerfali FZ et al (2013) MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0002478

    Article  PubMed Central  PubMed  Google Scholar 

  114. Hashemi N, Sharifi M, Masjedi M et al (2018) Locked nucleic acid -anti- let-7a induces apoptosis and necrosis in macrophages infected with Leishmania major. Microb Pathog 119:193–199. https://doi.org/10.1016/j.micpath.2018.03.057

    Article  CAS  PubMed  Google Scholar 

  115. Lago TS, Silva JA, Lago EL et al (2018) The miRNA 361–3p, a regulator of GZMB and TNF is associated with therapeutic failure and longer time healing of cutaneous Leishmaniasis caused by L. (viannia) braziliensis. Front Immunol 9:2621. https://doi.org/10.3389/fimmu.2018.02621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Nunes S, Silva IB, Ampuero MR et al (2018) Integrated analysis reveals that miR-193b, miR-671, and TREM-1 correlate with a good response to treatment of human localized cutaneous leishmaniasis caused by Leishmania braziliensis. Front Immunol 9:1–13. https://doi.org/10.3389/fimmu.2018.00640

    Article  CAS  Google Scholar 

  117. Kumar V, Kumar A, Das S et al (2018) Leishmania donovani activates hypoxia inducible factor-1α and miR-210 for survival in macrophages by downregulation of NF-κB mediated pro-inflammatory immune respons. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.00385

    Article  Google Scholar 

  118. Geraci NS, Tan JC, Mcdowell MA (2015) Characterization of microRNA expression profiles in Leishmania-infected human phagocytes. Parasite Immunol 37:43–51. https://doi.org/10.1111/pim.12156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Singh AK, Pandey RK, Shaha C, Madhubala R (2016) MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy 12:1817–1831. https://doi.org/10.1080/15548627.2016.1203500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Ghosh J, Bose M, Roy S, Bhattacharyya SN (2013) Leishmania donovani targets dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 13:277–288. https://doi.org/10.1016/j.chom.2013.02.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Tiwari N, Kumar V, Gedda MR et al (2017) Identification and characterization of miRNAs in response to Leishmania donovani infection: delineation of their roles in macrophage dysfunction. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.00314

    Article  Google Scholar 

  122. Diotallevi A, De Santi M, Buffi G et al (2018) Leishmania infection induces MicroRNA hsa-miR-346 in human cell line-derived macrophages. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.01019

    Article  Google Scholar 

  123. Bragato JP, Melo LM, Venturin GL et al (2018) Relationship of peripheral blood mononuclear cells miRNA expression and parasitic load in canine visceral Leishmaniasis. PLoS ONE 13:1–16. https://doi.org/10.1371/journal.pone.0206876

    Article  CAS  Google Scholar 

  124. Di Loria A, Dattilo V, Santoro D et al (2020) Expression of serum exosomal miRNA 122 and lipoprotein levels in dogs naturally infected by Leishmania infantum: a preliminary study. Animals 10:1–10. https://doi.org/10.3390/ani10010100

    Article  Google Scholar 

  125. Xue X, Zhang Q, Huang Y et al (2008) No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection. Malar J 7:1–6. https://doi.org/10.1186/1475-2875-7-47

    Article  CAS  Google Scholar 

  126. Lamonte G, Philip N, Reardon J et al (2012) Translocation of sickle cell erythrocyte MicroRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12:187–199. https://doi.org/10.1016/j.chom.2012.06.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Van Loon W, Gai PP, Hamann L et al (2019) MiRNA-146a polymorphism increases the odds of malaria in pregnancy 11 medical and health sciences 1107 immunology 11 medical and health sciences 1108 medical microbiology. Malar J 18:1–7. https://doi.org/10.1186/s12936-019-2643-z

    Article  Google Scholar 

  128. Biryukova I, Ye T, Levashina E (2014) Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. BMC Genomics 15:1–19. https://doi.org/10.1186/1471-2164-15-557

    Article  CAS  Google Scholar 

  129. Winter F, Edaye S, Hüttenhofer A, Brunel C (2007) Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res 35:6953–6962. https://doi.org/10.1093/nar/gkm686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Baro B, Deroost K, Raiol T et al (2017) Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile. PLoS Negl Trop Dis 11:6–13. https://doi.org/10.1371/journal.pntd.0005365

    Article  Google Scholar 

  131. Ketprasit N, Cheng IS, Deutsch F et al (2020) The characterization of extracellular vesicles-derived microRNAs in Thai malaria patients. Malar J 19:1–14. https://doi.org/10.1186/s12936-020-03360-z

    Article  CAS  Google Scholar 

  132. Nonaka CKV, Macêdo CT, Cavalcante BRR et al (2019) Circulating miRNAs as potential biomarkers associated with cardiac remodeling and fibrosis in chagas disease cardiomyopathy. Int J Mol Sci 20:1–16. https://doi.org/10.3390/ijms20164064

    Article  CAS  Google Scholar 

  133. Linhares-Lacerda L, Granato A, Gomes-Neto JF et al (2018) Circulating plasma MicroRNA-208a as potential biomarker of chronic indeterminate phase of Chagas disease. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.00269

    Article  Google Scholar 

  134. Zeiner GM, Norman KL, Thomson JM et al (2010) Toxoplasma gondii infection specifically increases the levels of key host microRNAs. PLoS ONE. https://doi.org/10.1371/journal.pone.0008742

    Article  PubMed Central  PubMed  Google Scholar 

  135. Cai Y, Chen H, Jin L et al (2013) STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage. Parasit Vectors 6:1–9. https://doi.org/10.1186/1756-3305-6-356

    Article  CAS  Google Scholar 

  136. Ngô HM, Zhou Y, Lorenzi H et al (2017) Toxoplasma modulates signature pathways of human epilepsy, neurodegeneration & cancer. Sci Rep 7:1–32. https://doi.org/10.1038/s41598-017-10675-6

    Article  CAS  Google Scholar 

  137. Meira-Strejevitch CS, de Pereira SI, Hippólito DDC et al (2020) Ocular toxoplasmosis associated with up-regulation of miR-155-5p/miR-29c-3p and down-regulation of miR-21-5p/miR-125b-5p. Cytokine 127:154990. https://doi.org/10.1016/j.cyto.2020.154990

    Article  CAS  PubMed  Google Scholar 

  138. Meningher T, Lerman G, Regev-Rudzki N et al (2017) Schistosomal microRNAs isolated from extracellular vesicles in sera of infected patients: a new tool for diagnosis and follow-up of human schistosomiasis. J Infect Dis 215:378–386. https://doi.org/10.1093/infdis/jiw539

    Article  CAS  PubMed  Google Scholar 

  139. Mariconti M, Vola A, Manciulli T et al (2019) Correction to: role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment (Immunologic Research, (2019), 67, 1, (93-97), 10.1007/s12026-018-9041-4). Immunol Res 67:98. https://doi.org/10.1007/s12026-018-9060-1

    Article  CAS  PubMed  Google Scholar 

  140. Orsten S, Baysal Y-C et al (2021) MicroRNA expression profile in patients with cystic echinococcosis and identification of possible cellular pathways. J Helminthol. https://doi.org/10.1017/S0022149X2000098X

    Article  PubMed  Google Scholar 

  141. Mortezaei S, Afgar A, Ali M, Mohammad S (2019) The effect of albendazole sulfoxide on the expression of miR-61 and let-7 in di ff erent in vitro developmental stages of Echinococcus granulosus. Acta Trop 195:97–102. https://doi.org/10.1016/j.actatropica.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  142. Ren B, Wang H, Ren L et al (2019) Screening for microRNA-based diagnostic markers in hepatic alveolar echinococcosis. Med (United States) 98:1–7. https://doi.org/10.1097/MD.0000000000017156

    Article  CAS  Google Scholar 

  143. Guo X, Zheng Y (2020) Profiling of miRNAs in mouse peritoneal macrophages responding to Echinococcus multilocularis infection. Front Cell Infect Microbiol 10:1–9. https://doi.org/10.3389/fcimb.2020.00132

    Article  CAS  Google Scholar 

  144. Guo X, Zheng Y (2017) Expression profiling of circulating miRNAs in mouse serum in response to Echinococcus multilocularis infection. Parasitology 144:1079–1087. https://doi.org/10.1017/S0031182017000300

    Article  CAS  PubMed  Google Scholar 

  145. Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep 16:24–43. https://doi.org/10.15252/embr.201439363

    Article  CAS  PubMed  Google Scholar 

  146. Wang J, Yao Y, Chen X, Wu J, Gu T, Tang X (2018) Host derived exosomes-pathogens interactions: potential functions of exosomes in pathogen infection. Biomed Pharmacother 108:1451–1459. https://doi.org/10.1016/j.biopha.2018.09.174

    Article  CAS  PubMed  Google Scholar 

  147. Johnstone RM, Adam M, Hammonds JR, Turbide C (1987) Vesicle formation during reticulocyte maturation. J Biol Chem 262:9412–9420. https://doi.org/10.1016/S0021-9258(18)48095-7

    Article  CAS  PubMed  Google Scholar 

  148. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science (-80). https://doi.org/10.1126/science.aau6977

    Article  Google Scholar 

  149. Xie F, Zhou X, Fang M et al (2019) Extracellular vesicles in cancer ımmune microenvironment and cancer ımmunotherapy. Adv Sci. https://doi.org/10.1002/advs.201901779

    Article  Google Scholar 

  150. Tai Y, Hsieh KCJ, Shen T (2018) Exosomes in cancer development and clinical applications. Cancer Sci. https://doi.org/10.1111/cas.13697

    Article  PubMed Central  PubMed  Google Scholar 

  151. Dai J, Su Y, Zhong S et al (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-020-00261-0

    Article  PubMed Central  PubMed  Google Scholar 

  152. Nawaz M, Malik MI, Hameed M, Zhou J (2019) Research progress on the composition and function of parasite-derived exosomes. Acta Trop 196:30–36. https://doi.org/10.1016/j.actatropica.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  153. Ludwig N, Whiteside TL, Reichert TE (2019) Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci. https://doi.org/10.3390/ijms20194684

    Article  PubMed Central  PubMed  Google Scholar 

  154. Nedaeinia R, Manian M, Jazayeri MH et al (2017) Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gen Ther. https://doi.org/10.1038/cgt.2016.77

    Article  Google Scholar 

  155. Coakley G, Maizels RM, Buck AH (2015) Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 31:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mojdeh K, Mirsamadi SE, Mirjalali H, Reza Zali M (2020) Isolation and functions of extracellular vesicles derived from parasites: the promise of a new era in immunotherapy, vaccination, and diagnosis. Int J Nanomedicine 15:2957–2969. https://doi.org/10.2147/IJN.S250993

    Article  Google Scholar 

  157. Samoil V, Dagenais M, Ganapathy V et al (2018) Vesicle-based secretion in schistosomes: analysis of protein and microRNA ( miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Sci Rep. https://doi.org/10.1038/s41598-018-21587-4

    Article  PubMed Central  PubMed  Google Scholar 

  158. Wu Z, Wang L, Li J et al (2019) Extracellular vesicle-mediated communication within host-parasite interactions. Front Immunol. https://doi.org/10.3389/fimmu.2018.03066

    Article  PubMed Central  PubMed  Google Scholar 

  159. Varikuti S, Jha BK, Holcomb EA et al (2020) The role of vascular endothelium and exosomes in human protozoan parasitic diseases. Vessel plus. https://doi.org/10.20517/2574-1209.2020.27

    Article  PubMed Central  PubMed  Google Scholar 

  160. Antoniio M, Trelis M, Cortes A et al (2012) Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are ınternalized in ıntestinal host cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0045974

    Article  Google Scholar 

  161. Buck AH, Coakley G, Simbari F et al (2014) Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. https://doi.org/10.1038/ncomms6488

    Article  PubMed  Google Scholar 

  162. Li Y, Yuan L, Xiu F, et al (2018) Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses. 467–477

  163. Hassani K, Shio MT, Martel C et al (2014) Absence of metalloprotease GP63 alters the protein content of leishmania exosomes. PLoS ONE. https://doi.org/10.1371/journal.pone.0095007

    Article  PubMed Central  PubMed  Google Scholar 

  164. Atayde VD, Aslan H, Townsend S et al (2015) Exosome secretion by the parasitic protozoan Leishmania within the aand fly Midgut. Cell Rep 13:957–967. https://doi.org/10.1016/j.celrep.2015.09.058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Cacho E, Gallego M, Lillehoj hyun S et al (2016) Induction of protective immunity against experimental Eimeria tenella infection using serum exosomes Emilio del Cacho. Vet Parasitol. https://doi.org/10.1016/j.vetpar.2016.04.043

    Article  PubMed  Google Scholar 

  166. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422. https://doi.org/10.1146/annurev.cellbio.19.111301.153609

    Article  CAS  PubMed  Google Scholar 

  167. Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94. https://doi.org/10.1007/s12192-008-0058-9

    Article  CAS  PubMed  Google Scholar 

  168. Fratini F, Tamarozzi F, Macchia G et al (2020) Proteomic analysis of plasma exosomes from cystic echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis 14:1–31. https://doi.org/10.1371/journal.pntd.0008586

    Article  CAS  Google Scholar 

  169. Gualdrón-López M, Flannery EL, Kangwanrangsan N et al (2018) Characterization of Plasmodium vivax proteins in plasma-derived exosomes from malaria-infected liver-chimeric humanized mice. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.01271

    Article  Google Scholar 

  170. Atyame Nten CM, Sommerer N, Rofidal V et al (2010) Excreted/secreted proteins from trypanosome procyclic strains. J Biomed Biotechnol. https://doi.org/10.1155/2010/212817

    Article  PubMed  Google Scholar 

  171. Bispo A, Maia MM, Pereira IDS et al (2020) Human extracellular vesicles and correlation with two clinical forms of toxoplasmosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0229602

    Article  PubMed Central  PubMed  Google Scholar 

  172. Soto-Serna LE, Diupotex M, Zamora-Chimal J et al (2020) Leishmania mexicana: novel insights of immune modulation through amastigote exosomes. J Immunol Res. https://doi.org/10.1155/2020/889454

    Article  PubMed Central  PubMed  Google Scholar 

  173. Kosanović M, Cvetković J, Gruden-Movsesijan A et al (2019) Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties. Parasite Immunol 41:1–5. https://doi.org/10.1111/pim.12665

    Article  CAS  Google Scholar 

  174. Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR et al (2009) Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11:29–39. https://doi.org/10.1016/j.micinf.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  175. Mantel PY, Hjelmqvist D, Walch M et al (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun. https://doi.org/10.1038/ncomms12727

    Article  PubMed Central  PubMed  Google Scholar 

  176. Wang Z, Xi J, Hao X et al (2017) Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum. Nat Publ Gr. https://doi.org/10.1038/emi.2017.63

    Article  Google Scholar 

  177. Martin-Jaular L, Nakayasu ES, Ferrer M et al (2011) Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS ONE 6:1–10. https://doi.org/10.1371/journal.pone.0026588

    Article  CAS  Google Scholar 

  178. Regev-Rudzki N, Wilson DW, Carvalho TG et al (2013) Resource cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153:1120–1133. https://doi.org/10.1016/j.cell.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  179. Sisquella X, Ofir-Birin Y, Pimentel MA et al (2017) Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun. https://doi.org/10.1038/s41467-017-02083-1

    Article  PubMed Central  PubMed  Google Scholar 

  180. Dekel E, Yaffe D, Rosenhek-Goldian I et al (2021) 20S proteasomes secreted by the malaria parasite promote its growth. Nat Commun 12:1–19. https://doi.org/10.1038/s41467-021-21344-8

    Article  CAS  Google Scholar 

  181. Colineau L, Clos J, Mee K et al (2017) Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Med Microbiol Immunol 206:235–257. https://doi.org/10.1007/s00430-017-0500-7

    Article  CAS  PubMed  Google Scholar 

  182. Castelli G, Bruno F, Saieva L et al (2019) Exosome secretion by Leishmania infantum modulate the chemotactic behavior and cytokinic expression creating an environment permissive for early infection. Exp Parasitol 198:39–45. https://doi.org/10.1016/j.exppara.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  183. Forrest DM, Batista M, Marchini FK et al (2020) Proteomic analysis of exosomes derived from procyclic and metacyclic-like cultured Leishmania infantum chagasi. J Proteom. https://doi.org/10.1016/j.jprot.2020.103902

    Article  Google Scholar 

  184. Nogueira PM, Ribeiro K, Silveira ACO et al (2015) Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J Extracell Vesicles. https://doi.org/10.3402/jev.v4.28734

    Article  PubMed Central  PubMed  Google Scholar 

  185. Moreira LR, Serrano FR, Osuna A (2019) Extracellular vesicles of trypanosoma cruzi tissue-culture cell-derived trypomastigotes: induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis 13:1–26. https://doi.org/10.1371/journal.pntd.0007163

    Article  CAS  Google Scholar 

  186. Fadda A, Färber V, Droll D, Clayton C (2013) The roles of 3′-exoribonucleases and the exosome in trypanosome mRNA degradation. RNA 19:937–947. https://doi.org/10.1261/rna.038430.113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Szempruch AJ, Sykes SE, Kieft R et al (2016) Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164:246–257. https://doi.org/10.1016/j.cell.2015.11.051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Kim MJ, Jung BK, Cho J et al (2016) Exosomes secreted by Toxoplasma gondii-infected L6 cells: their effects on host cell proliferation and cell cycle changes. Korean J Parasitol 54:147–154. https://doi.org/10.3347/kjp.2016.54.2.147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Jung BK, Do KE, Song H et al (2020) Immunogenicity of exosomes from dendritic cells stimulated with Toxoplasma gondii lysates in ocularly immunized mice. Korean J Parasitol 58:185–189. https://doi.org/10.3347/kjp.2020.58.2.185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Olmos-Ortiz LM, Barajas-Mendiola MA, Barrios-Rodiles M et al (2017) Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol. https://doi.org/10.1111/pim.12426

    Article  PubMed  Google Scholar 

  191. Artuyants A, Campos TL, Rai AK et al (2020) Extracellular vesicles produced by the protozoan parasite Trichomonas vaginalis contain a preferential cargo of tRNA-derived small RNAs. Int J Parasitol 50:1145–1155. https://doi.org/10.1016/j.ijpara.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  192. Sharma M, Morgado P, Zhang H et al (2020) Characterization of extracellular vesicles from entamoeba histolytica identifies roles in intercellular communication that regulates parasite growth and development. Infect Immun. https://doi.org/10.1128/IAI.00349-20

    Article  PubMed Central  PubMed  Google Scholar 

  193. Lin WC, Tsai CY, Huang JM et al (2019) Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome—like vesicles. Parasit Vectors. https://doi.org/10.1186/s13071-019-3725-z

    Article  PubMed Central  PubMed  Google Scholar 

  194. Siles-Lucas M, Sánchez-Ovejero C, González-Sánchez M et al (2017) Isolation and characterization of exosomes derived from fertile sheep hydatid cysts. Vet Parasitol 236:22–33. https://doi.org/10.1016/j.vetpar.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  195. Zhang X, Gong W, Cao S et al (2020) Comprehensive analysis of non-coding RNA profiles of exosome-like vesicles from the protoscoleces and hydatid cyst fluid of Echinococcus granulosus. Front Cell Infect Microbiol 10:1–14. https://doi.org/10.3389/fcimb.2020.00316

    Article  CAS  Google Scholar 

  196. Ding J, He G, Wu J et al (2019) miRNA-seq of Echinococcus multilocularis Extracellular Vesicles and Immunomodulatory Effects of miR-4989. Front Microbiol 10:1–9. https://doi.org/10.3389/fmicb.2019.02707

    Article  Google Scholar 

  197. Gomez-Fuentes S, Hernández-de la Fuente S, Morales-Ruiz V et al (2021) A novel, sequencing-free strategy for the functional characterization of Taenia solium proteomic fingerprint. PLoS Negl Trop Dis 15:e0009104. https://doi.org/10.1371/journal.pntd.0009104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Liu J, Zhu L, Wang J et al (2019) Schistosoma japonicum extracellular vesicle mirna cargo regulates host macrophage functions facilitating parasitism. PLoS Pathog 15:1–27. https://doi.org/10.1371/journal.ppat.1007817

    Article  CAS  Google Scholar 

  199. Mekonnen GG, Tedla BA, Pickering D, et al (2020) Schistosoma haematobium extracellular vesicle proteins confer protection in a heterologous model of schistosomiasis. bioRxiv 24:1–19. https://doi.org/10.3390/vaccines8030416

  200. Cwiklinski K, De La Torre-Escudero E, Trelis M et al (2015) The extracellular vesicles of the helminth pathogen, Fasciola hepatica: biogenesis pathways and cargo molecules involved in parasite pathogenesis. Mol Cell Proteom 14:3258–3273. https://doi.org/10.1074/mcp.M115.053934

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Caner.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, E.A., Caner, A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasit. 67, 1–17 (2022). https://doi.org/10.1007/s11686-021-00444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-021-00444-x

Keywords

Navigation