Skip to main content
Log in

Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir–ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir–ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir–ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China’s homegrown anti-COVID-19 drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COVID-19 Cumulative Infection Collaborators. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet 2022; 399(10344): 2351–2380

    Article  Google Scholar 

  2. Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L; Geneva Centre for Emerging Viral Diseases. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 2021; 27(8): 1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, Anyaneji UJ, Bester PA, Boni MF, Chand M, Choga WT, Colquhoun R, Davids M, Deforche K, Doolabh D, du Plessis L, Engelbrecht S, Everatt J, Giandhari J, Giovanetti M, Hardie D, Hill V, Hsiao NY, Iranzadeh A, Ismail A, Joseph C, Joseph R, Koopile L, Kosakovsky Pond SL, Kraemer MUG, Kuate-Lere L, Laguda-Akingba O, Lesetedi-Mafoko O, Lessells RJ, Lockman S, Lucaci AG, Maharaj A, Mahlangu B, Maponga T, Mahlakwane K, Makatini Z, Marais G, Maruapula D, Masupu K, Matshaba M, Mayaphi S, Mbhele N, Mbulawa MB, Mendes A, Mlisana K, Mnguni A, Mohale T, Moir M, Moruisi K, Mosepele M, Motsatsi G, Motswaledi MS, Mphoyakgosi T, Msomi N, Mwangi PN, Naidoo Y, Ntuli N, Nyaga M, Olubayo L, Pillay S, Radibe B, Ramphal Y, Ramphal U, San JE, Scott L, Shapiro R, Singh L, Smith-Lawrence P, Stevens W, Strydom A, Subramoney K, Tebeila N, Tshiabuila D, Tsui J, van Wyk S, Weaver S, Wibmer CK, Wilkinson E, Wolter N, Zarebski AE, Zuze B, Goedhals D, Preiser W, Treurnicht F, Venter M, Williamson C, Pybus OG, Bhiman J, Glass A, Martin DP, Rambaut A, Gaseitsiwe S, von Gottberg A, de Oliveira T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603(7902): 679–686

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao J, Wang Y, Xie XS. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Wang L, Møhlenberg M, Wang P, Zhou H. Immune evasion of neutralizing antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev 2023; 70: 13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng L, Liu S, Lu F. Impact of national Omicron outbreak at the end of 2022 on the future outlook of COVID-19 in China. Emerg Microbes Infect 2023; 12(1): 2191738

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19(11): 685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22(6): 449–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC; ACTT-1 Study Group Members. Remdesivir for the treatment of Covid-19—final report. N Engl J Med 2020; 383(19): 1813–1826

    Article  CAS  PubMed  Google Scholar 

  10. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, Oguchi G, Ryan P, Nielsen BU, Brown M, Hidalgo A, Sachdeva Y, Mittal S, Osiyemi O, Skarbinski J, Juneja K, Hyland RH, Osinusi A, Chen S, Camus G, Abdelghany M, Davies S, Behenna-Renton N, Duff F, Marty FM, Katz MJ, Ginde AA, Brown SM, Schiffer JT, Hill JA; GS-US-540-9012 (PINETREE) Investigators. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022; 386(4): 305–315

    Article  CAS  PubMed  Google Scholar 

  11. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, Baniecki M, Hendrick VM, Damle B, Simón-Campos A, Pypstra R, Rusnak JM; EPIC-HR Investigators. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022; 386(15): 1397–1408

    Article  CAS  PubMed  Google Scholar 

  12. Li P, Wang Y, Lavrijsen M, Lamers MM, de Vries AC, Rottier RJ, Bruno MJ, Peppelenbosch MP, Haagmans BL, Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res 2022; 32(3): 322–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu B, Chang J. The first Chinese oral anti-COVID-19 drug azvudine launched. Innovation (Camb) 2022; 3(6): 100321

    CAS  PubMed  Google Scholar 

  14. Xie Y, Yin W, Zhang Y, Shang W, Wang Z, Luan X, Tian G, Aisa HA, Xu Y, Xiao G, Li J, Jiang H, Zhang S, Zhang L, Xu HE, Shen J. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res 2021; 31(11): 1212–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao Z, Gao W, Bao H, Feng H, Mei S, Chen P, Gao Y, Cui Z, Zhang Q, Meng X, Gui H, Wang W, Jiang Y, Song Z, Shi Y, Sun J, Zhang Y, Xie Q, Xu Y, Ning G, Gao Y, Zhao R. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med 2023; 388(5): 406–417

    Article  CAS  PubMed  Google Scholar 

  16. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. US Food and Drug Administration. FDA approves first oral antiviral for treatment of COVID-19 in adults. Available at the website of FDA

  18. US Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization for molnupiravir. Available at the website of FDA

  19. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295(20): 6785–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho A, Saunders OL, Butler T, Zhang L, Xu J, Vela JE, Feng JY, Ray AS, Kim CU. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett 2012; 22(8): 2705–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cihlar T, Mackman RL. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir Ther 2022; 27(2): 13596535221082773

    Article  PubMed  Google Scholar 

  22. Olender SA, Perez KK, Go AS, Balani B, Price-Haywood EG, Shah NS, Wang S, Walunas TL, Swaminathan S, Slim J, Chin B, De Wit S, Ali SM, Soriano Viladomiu A, Robinson P, Gottlieb RL, Tsang TYO, Lee IH, Hu H, Haubrich RH, Chokkalingam AP, Lin L, Zhong L, Bekele BN, Mera-Giler R, Phulpin C, Edgar H, Gallant J, Diaz-Cuervo H, Smith LE, Osinusi AO, Brainard DM, Bernardino JI; GS-US-540-5773 and GS-US-540-5807 Investigators. Remdesivir for severe coronavirus disease 2019 (COVID-19) versus a cohort receiving standard of care. Clin Infect Dis 2021; 73(11): e4166–e4174

    Article  CAS  PubMed  Google Scholar 

  23. WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022; 399(10339): 1941–1953

    Article  PubMed Central  Google Scholar 

  24. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G, Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X, Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang L, Zhang Y, Cao L, Guo T, Wan Y, Qin H, Jiang Y, Jaki T, Hayden FG, Horby PW, Cao B, Wang C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saravolatz LD, Depcinski S, Sharma M. Molnupiravir and nirmatrelvir-ritonavir: oral coronavirus disease 2019 antiviral drugs. Clin Infect Dis 2023; 76(1): 165–171

    Article  PubMed  Google Scholar 

  26. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH3rd, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883

    Article  CAS  PubMed  Google Scholar 

  27. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martín-Quirós A, Caraco Y, Williams-Diaz A, Brown ML, Du J, Pedley A, Assaid C, Strizki J, Grobler JA, Shamsuddin HH, Tipping R, Wan H, Paschke A, Butterton JR, Johnson MG, De Anda C; MOVe-OUT Study Group. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2022; 386(6): 509–520

    Article  PubMed  Google Scholar 

  28. National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at the website of NIH

  29. Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374(6575): 1586–1593

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct Target Ther 2020; 5(1): 67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao Y, Fang C, Zhang Q, Zhang R, Zhao X, Duan Y, Wang H, Zhu Y, Feng L, Zhao J, Shao M, Yang X, Zhang L, Peng C, Yang K, Ma D, Rao Z, Yang H. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell 2022; 13(9): 689–693

    Article  CAS  PubMed  Google Scholar 

  32. Lamontagne F, Agarwal A, Rochwerg B, Siemieniuk RA, Agoritsas T, Askie L, Lytvyn L, Leo YS, Macdonald H, Zeng L, Amin W, da Silva ARA, Aryal D, Barragan FAJ, Bausch FJ, Burhan E, Calfee CS, Cecconi M, Chacko B, Chanda D, Dat VQ, De Sutter A, Du B, Freedman S, Geduld H, Gee P, Gotte M, Harley N, Hashimi M, Hunt B, Jehan F, Kabra SK, Kanda S, Kim YJ, Kissoon N, Krishna S, Kuppalli K, Kwizera A, Lado Castro-Rial M, Lisboa T, Lodha R, Mahaka I, Manai H, Mendelson M, Migliori GB, Mino G, Nsutebu E, Preller J, Pshenichnaya N, Qadir N, Relan P, Sabzwari S, Sarin R, Shankar-Hari M, Sharland M, Shen Y, Ranganathan SS, Souza JP, Stegemann M, Swanstrom R, Ugarte S, Uyeki T, Venkatapuram S, Vuyiseka D, Wijewickrama A, Tran L, Zeraatkar D, Bartoszko JJ, Ge L, Brignardello-Petersen R, Owen A, Guyatt G, Diaz J, Kawano-Dourado L, Jacobs M, Vandvik PO. A living WHO guideline on drugs for covid-19. BMJ 2020; 370: m3379

    PubMed  Google Scholar 

  33. Charness ME, Gupta K, Stack G, Strymish J, Adams E, Lindy DC, Mohri H, Ho DD. Rebound of SARS-CoV-2 infection after nirmatrelvir-ritonavir treatment. N Engl J Med 2022; 387(11): 1045–1047

    Article  PubMed  Google Scholar 

  34. Sun L, Peng Y, Yu W, Zhang Y, Liang L, Song C, Hou J, Qiao Y, Wang Q, Chen J, Wu M, Zhang D, Li E, Han Z, Zhao Q, Jin X, Zhang B, Huang Z, Chai J, Wang JH, Chang J. Mechanistic insight into antiretroviral potency of 2′-deoxy-2′-β-fluoro-4′-azidocytidine (FNC) with a long-lasting effect on HIV-1 prevention. J Med Chem 2020; 63(15): 8554–8566

    Article  CAS  PubMed  Google Scholar 

  35. Yu B, Chang J. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Signal Transduct Target Ther 2020; 5(1): 236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang RR, Yang QH, Luo RH, Peng YM, Dai SX, Zhang XJ, Chen H, Cui XQ, Liu YJ, Huang JF, Chang JB, Zheng YT. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PLoS One 2014; 9(8): e105617

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Ren Z, Luo H, Yu Z, Song J, Liang L, Wang L, Wang H, Cui G, Liu Y, Wang J, Li Q, Zeng Z, Yang S, Pei G, Zhu Y, Song W, Yu W, Song C, Dong L, Hu C, Du J, Chang J. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study. Adv Sci (Weinh) 2020; 7(19): 2001435

    Article  CAS  PubMed  Google Scholar 

  38. Zhu KW. Efficacy and safety evaluation of azvudine in the prospective treatment of COVID-19 based on four phase III clinical trials. Front Pharmacol 2023; 14: 1228548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun Y, Jin L, Dian Y, Shen M, Zeng F, Chen X, Deng G. Oral azvudine for hospitalised patients with COVID-19 and pre-existing conditions: a retrospective cohort study. EClinicalMedicine 2023; 59: 101981

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao Y, Luo Z, Ren S, Duan Z, Han Y, Liu H, Gao Z, Zhang X, Hu Z, Ma Y. Antiviral effect of azvudine and nirmatrelvir-ritonavir among hospitalized patients with COVID-19. J Infect 2023; 86(6): e158–e160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dian Y, Meng Y, Sun Y, Deng G, Zeng F. Azvudine versus Paxlovid for oral treatment of COVID-19 in Chinese patients with pre-existing comorbidities. J Infect 2023; 87(2): e24–e27

    Article  CAS  PubMed  Google Scholar 

  42. Wang F, Xiao W, Tang Y, Cao M, Shu D, Asakawa T, Xu Y, Jiang X, Zhang L, Wang W, Tang J, Huang Y, Yang Y, Yang Y, Tang R, Shen J, Lu H. Efficacy and safety of SIM0417 (SSD8432) plus ritonavir for COVID-19 treatment: a randomised, double-blind, placebo-controlled, phase 1b trial. Lancet Reg Health West Pac 2023; 38: 100835

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen X, Li P, Huang J, Yang Y, Zhang H, Wang Z, Zhu Z, Wang J, Zhang J, Chen K, He H, Long C, Chen S. Discovery of novel bicyclic[3.3.0]proline peptidyl a-ketoamides as potent 3CL-protease inhibitors for SARS-CoV-2. Bioorg Med Chem Lett 2023; 90: 129324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu KW. Deuremidevir and simnotrelvir-ritonavir for the treatment of COVID-19. ACS Pharmacol Transl Sci 2023; 6(9): 1306–1309

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, Huang X, Ma Q. Petr Kuzmič, Zhou B, Xu J, Liu B, Jiang H, Zhang W, Yang C, Wu S, Huang J, Li H, Long C, Zhao X, Xu H, Sheng Y, Guo Y, Niu C, Xue L, Xu Y, Liu J, Zhang T, James Spencer, Deng W, Chen S, Xiong X, Yang Z, Zhong N. Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor. 2023, PREPRINT (Version 1) Available at Research Square. doi: https://doi.org/10.21203/rs.3.rs-2634509/v1

  46. Wei D, Hu T, Zhang Y, Zheng W, Xue H, Shen J, Xie Y, Aisa HA. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2. Bioorg Med Chem 2021; 46: 116364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang R, Zhang Y, Zheng W, Shang W, Wu Y, Li N, Xiong J, Jiang H, Shen J, Xiao G, Xie Y, Zhang L. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct Target Ther 2022; 7(1): 123

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pharmaceuticals and Medical Devices Agency. Tokyo: Pharmaceuticals and medical devices agency; c2022. Gilead sciences. section 2.6.4 pharmacokinetics written summary of remdesivir common technical document. 2020. Available at the website of Pharmaceuticals and Medical Devices Agency

  49. Qian HJ, Wang Y, Zhang MQ, Xie YC, Wu QQ, Liang LY, Cao Y, Duan HQ, Tian GH, Ma J, Zhang ZB, Li N, Jia JY, Zhang J, Aisa HA, Shen JS, Yu C, Jiang HL, Zhang WH, Wang Z, Liu GY. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin 2022; 43(12): 3130–3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. National Health Commission of the People’s Republic of China. A transcript of Press Conference of The Joint Prevention and Control Mechanism of the State Council, 13 May 2022. Available at the website of NHC

  51. Shen Y, Ai J, Lin N, Zhang H, Li Y, Wang H, Wang S, Wang Z, Li T, Sun F, Fan Z, Li L, Lu Y, Meng X, Xiao H, Hu H, Ling Y, Li F, Li H, Xi C, Gu L, Zhang W, Fan X. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 Omicron variants. Emerg Microbes Infect 2022; 11(1): 1518–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Extance A. Covid-19: what is the evidence for the antiviral molnupiravir? BMJ 2022; 377: o926

    Article  PubMed  Google Scholar 

  53. Wang L, Berger NA, Davis PB, Kaelber DC, Volkow ND, Xu R. COVID-19 rebound after Paxlovid and Molnupiravir during January–June 2022. medRxiv 2022; doi: https://doi.org/10.1101/2022.06.21.22276724

  54. Aggarwal NR, Molina KC, Beaty LE, Bennett TD, Carlson NE, Mayer DA, Peers JL, Russell S, Wynia MK, Ginde AA. Real-world use of nirmatrelvir-ritonavir in outpatients with COVID-19 during the era of omicron variants including BA.4 and BA.5 in Colorado, USA: a retrospective cohort study. Lancet Infect Dis 2023; 23(6): 696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ledford H. Long-COVID treatments: why the world is still waiting. Nature 2022; 608(7922): 258–260

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Ayoubkhani D, Bermingham C, Pouwels KB, Glickman M, Nafilyan V, Zaccardi F, Khunti K, Alwan NA, Walker AS. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 2022; 377: e069676

    Article  PubMed  Google Scholar 

  57. McCarthy MW. VV116 as a potential treatment for COVID-19. Expert Opin Pharmacother 2023; 24(6): 675–678

    Article  PubMed  Google Scholar 

  58. Zhao J, Zhang G, Zhang Y, Yi D, Li Q, Ma L, Guo S, Li X, Guo F, Lin R, Luu G, Liu Z, Wang Y, Cen S. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res 2021; 196: 105209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown AJ, Won JJ, Graham RL, Dinnon KH3rd, Sims AC, Feng JY, Cihlar T, Denison MR, Baric RS, Sheahan TP. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169: 104541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Sch&fer A, Dinnon KH3rd, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Major Scientific and Technological Special Project for “Significant New Drugs Development”(No. 2017ZX09304007), the National Natural Science Foundation of China (Nos. 82088102 and 81970728), the Science and Technology Commission of Shanghai Municipality (Nos. 22Y31900300 and 23XD1432600), and the Innovative Research Team of High-Level Local Universities in Shanghai. Yu Xu is supported by the “National Top Young Talents” program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Xu or Ren Zhao.

Ethics declarations

Conflicts of interest Qiuyu Cao, Yi Ding, Yu Xu, Mian Li, Ruizhi Zheng, Zhujun Cao, Weiqing Wang, Yufang Bi, Guang Ning, Yiping Xu, and Ren Zhao declare that they have no conflicts of interest.

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Ding, Y., Xu, Y. et al. Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116). Front. Med. 17, 1068–1079 (2023). https://doi.org/10.1007/s11684-023-1037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-1037-3

Keywords

Navigation