Skip to main content
Log in

Base editors: development and applications in biomedicine

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017; 169(3): 559

    Article  CAS  PubMed  Google Scholar 

  5. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9(1): 1911

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 2019; 20(8): 490–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning. Science 2023; 379(6629): eadd8643

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhary R, Singh B, Kumar M, Gakhar SK, Saini AK, Parmar VS, Chhillar AK. Role of single nucleotide polymorphisms in pharmacogenomics and their association with human diseases. Drug Metab Rev 2015; 47(3): 281–290

    Article  CAS  PubMed  Google Scholar 

  9. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016; 44(D1): D862–D868

    Article  CAS  PubMed  Google Scholar 

  10. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19(12): 770–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016; 353(6305): aaf8729

    Article  PubMed  Google Scholar 

  13. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551(7681): 464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molla KA, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 2019; 37(10): 1121–1142

    Article  CAS  PubMed  Google Scholar 

  16. Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19(12): 839–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang B, Yang L, Chen J. Development and application of base editors. CRISPR J 2019; 2(2): 91–104

    Article  PubMed  Google Scholar 

  18. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38(7): 824–844

    Article  CAS  PubMed  Google Scholar 

  19. Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, Zhang X. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 2021; 39(1): 35–40

    Article  CAS  PubMed  Google Scholar 

  20. Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, Grünewald J, Joung JK. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 2021; 39(1): 41–46

    Article  CAS  PubMed  Google Scholar 

  21. Tong H, Wang X, Liu Y, Liu N, Li Y, Luo J, Ma Q, Wu D, Li J, Xu C, Yang H. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol 2023; [Epub ahead of print] doi: https://doi.org/10.1038/s41587-022-01595-6

  22. Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C, Qiu JL, Chen YH, Li J, Gao C. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 2020; 38(7): 875–882

    Article  CAS  PubMed  Google Scholar 

  23. Xie J, Huang X, Wang X, Gou S, Liang Y, Chen F, Li N, Ouyang Z, Zhang Q, Ge W, Jin Q, Shi H, Zhuang Z, Zhao X, Lian M, Wang J, Ye Y, Quan L, Wu H, Wang K, Lai L. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol 2020; 18(1): 131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, Chen T, Ge W, Zhuang Z, Lian M, Chen F, Li N, Ouyang Z, Lai C, Liu X, Li L, Ye Y, Wu H, Wang K, Lai L. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res 2022; 50(9): 5384–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F. A cytosine deaminase for programmable single-base RNA editing. Science 2019; 365(6451): 382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu F, Radey MC, Peterson SB, Mootha VK, Mougous JD, Liu DR. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020; 583(7817): 631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho SI, Lee S, Mok YG, Lim K, Lee J, Lee JM, Chung E, Kim JS. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022; 185(10): 1764–1776.e12

    Article  CAS  PubMed  Google Scholar 

  28. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeballos C MA, Gaj T. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol 2021; 39(7): 692–705

    Article  Google Scholar 

  30. Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, Montgomery SB, Bassik MC. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 2016; 13(12): 1036–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kweon J, Jang AH, Shin HR, See JE, Lee W, Lee JW, Chang S, Kim K, Kim Y. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene 2020; 39(1): 30–35

    Article  CAS  PubMed  Google Scholar 

  32. Sánchez-Rivera FJ, Diaz BJ, Kastenhuber ER, Schmidt H, Katti A, Kennedy M, Tem V, Ho YJ, Leibold J, Paffenholz SV, Barriga FM, Chu K, Goswami S, Wuest AN, Simon JM, Tsanov KM, Chakravarty D, Zhang H, Leslie CS, Lowe SW, Dow LE. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat Biotechnol 2022; 40(6): 862–873

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A. Functional interrogation of DNA damage response variants with base editing screens. Cell 2021; 184(4): 1081–1097.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanna RE, Hegde M, Fagre CR, DeWeirdt PC, Sangree AK, Szegletes Z, Griffith A, Feeley MN, Sanson KR, Baidi Y, Koblan LW, Liu DR, Neal JT, Doench JG. Massively parallel assessment of human variants with base editor screens. Cell 2021; 184(4): 1064–1080.e20

    Article  CAS  PubMed  Google Scholar 

  35. Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 2016; 13(12): 1029–1035

    Article  CAS  PubMed  Google Scholar 

  36. Hwang B, Lee W, Yum SY, Jeon Y, Cho N, Jang G, Bang D. Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nat Commun 2019; 10(1): 1234

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu K, Deng S, Ye C, Yao Z, Wang J, Gong H, Liu L, He X. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods 2021; 18(12): 1506–1514

    Article  CAS  PubMed  Google Scholar 

  38. Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 2020; 21(17): 6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29(11): 3107–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38(11): 1147–1169

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, Li L, Yin S, Yang L, Hu H, Han H, Li Y, Wang L, Chen G, Ma X, Geng H, Huang W, Pang X, Yang Z, Wu Y, Siwko S, Kurita R, Nakamura Y, Yang L, Liu M, Li D. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 2020; 38(7): 856–860

    Article  CAS  PubMed  Google Scholar 

  42. Grünewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR, Langner LM, Hsu JY, Aryee MJ, Joung JK. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 2020; 38(7): 861–864

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, Yamamoto S, Seki M, Masuyama N, Nishida K, Nishimasu H, Arakawa K, Kondo A, Nureki O, Tomita M, Aburatani H, Yachie N. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 2020; 38(7): 865–869

    Article  CAS  PubMed  Google Scholar 

  44. Grünewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Joung JK. CRISPR DNA base editors with reduced RNA offtarget and self-editing activities. Nat Biotechnol 2019; 37(9): 1041–1048

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen L, Park JE, Paa P, Rajakumar PD, Prekop HT, Chew YT, Manivannan SN, Chew WL. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun 2021; 12(1): 1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koblan LW, Arbab M, Shen MW, Hussmann JA, Anzalone AV, Doman JL, Newby GA, Yang D, Mok B, Replogle JM, Xu A, Sisley TA, Weissman JS, Adamson B, Liu DR. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat Biotechnol 2021; 39(11): 1414–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong X, Yang C, Ma Z, Chen M, Zhang X, Bi C. Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Rep 2022; 40(3): 111090

    Article  CAS  PubMed  Google Scholar 

  48. Chen L, Zhu B, Ru G, Meng H, Yan Y, Hong M, Zhang D, Luan C, Zhang S, Wu H, Gao H, Bai S, Li C, Ding R, Xue N, Lei Z, Chen Y, Guan Y, Siwko S, Cheng Y, Song G, Wang L, Yi C, Liu M, Li D. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol 2023; 41(5): 663–672

    Article  CAS  PubMed  Google Scholar 

  49. Zeng D, Zheng Z, Liu Y, Liu T, Li T, Liu J, Luo Q, Xue Y, Li S, Chai N, Yu S, Xie X, Liu YG, Zhu Q. Exploring C-to-G and A-to-Y base editing in rice by using new vector tools. Int J Mol Sci 2022; 23(14): 7990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Zhou L, Tao R, Liu N, Long J, Qin F, Tang W, Yang Y, Chen Q, Yao S. sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine. Genome Biol 2020; 21(1): 222

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tao W, Liu Q, Huang S, Wang X, Qu S, Guo J, Ou D, Li G, Zhang Y, Xu X, Huang X. CABE-RY: a PAM-flexible dualmutation base editor for reliable modeling of multi-nucleotide variants. Mol Ther Nucleic Acids 2021; 26: 114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao Y, Li M, Liu J, Xue X, Zhong J, Lin J, Ye B, Chen J, Qiao Y. Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors. Comput Struct Biotechnol J 2023; 21: 856–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, Doman JL, Huang TP, Raguram A, Banskota S, Newby GA, Tolar J, Osborn MJ, Liu DR. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol 2023; 41(5): 673–685

    Article  CAS  PubMed  Google Scholar 

  54. Lam DK, Feliciano PR, Arif A, Bohnuud T, Fernandez TP, Gehrke JM, Grayson P, Lee KD, Ortega MA, Sawyer C, Schwaegerle ND, Peraro L, Young L, Lee SJ, Ciaramella G, Gaudelli NM. Improved cytosine base editors generated from TadA variants. Nat Biotechnol 2023; 41(5): 686–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23(4): 199–214

    Article  CAS  PubMed  Google Scholar 

  56. Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet 2018; 34(2): 101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin T, Luo J, Huang D, Li H. Current progress of mitochondrial genome editing by CRISPR. Front Physiol 2022; 13: 883459

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee H, Lee S, Baek G, Kim A, Kang BC, Seo H, Kim JS. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 2021; 12(1): 1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo J, Zhang X, Chen X, Sun H, Dai Y, Wang J, Qian X, Tan L, Lou X, Shen B. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov 2021; 7(1): 78

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qi X, Chen X, Guo J, Zhang X, Sun H, Wang J, Qian X, Li B, Tan L, Yu L, Chen W, Zhang L, Ma Y, Shen B. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov 2021; 7(1): 95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen X, Liang D, Guo J, Zhang J, Sun H, Zhang X, Jin J, Dai Y, Bao Q, Qian X, Tan L, Hu P, Ling X, Shen B, Xu Z. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov 2022; 8(1): 8

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wei Y, Xu C, Feng H, Xu K, Li Z, Hu J, Zhou L, Wei Y, Zuo Z, Zuo E, Li W, Yang H, Zhang M. Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discov 2022; 8(1): 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Silva-Pinheiro P, Nash PA, Van Haute L, Mutti CD, Turner K, Minczuk M. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat Commun 2022; 13(1): 750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mok BY, Kotrys AV, Raguram A, Huang TP, Mootha VK, Liu DR. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 2022; 40(9): 1378–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee S, Lee H, Baek G, Namgung E, Park JM, Kim S, Hong S, Kim JS. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol 2022; 23(1): 211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim K, Cho SI, Kim JS. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat Commun 2022; 13(1): 366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mok YG, Lee JM, Chung E, Lee J, Lim K, Cho SI, Kim JS. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat Commun 2022; 13(1): 4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Willis JCW, Silva-Pinheiro P, Widdup L, Minczuk M, Liu DR. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 2022; 13(1): 7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wei Y, Li Z, Xu K, Feng H, Xie L, Li D, Zuo Z, Zhang M, Xu C, Yang H, Zuo E. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov 2022; 8(1): 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lei Z, Meng H, Liu L, Zhao H, Rao X, Yan Y, Wu H, Liu M, He A, Yi C. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 2022; 606(7915): 804–811

    Article  CAS  PubMed  Google Scholar 

  71. Lee S, Lee H, Baek G, Kim JS. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat Biotechnol 2023; 41(3): 378–386

    Article  CAS  PubMed  Google Scholar 

  72. Mi L, Shi M, Li YX, Xie G, Rao X, Wu D, Cheng A, Niu M, Xu F, Yu Y, Gao N, Wei W, Wang X, Wang Y. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat Commun 2023; 14(1): 874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Woolf TM, Chase JM, Stinchcomb DT. Toward the therapeutic editing of mutated RNA sequences. Proc Natl Acad Sci USA 1995; 92(18): 8298–8302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P, Wettengel J, Li JB, Stafforst T. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37(2): 133–138

    Article  CAS  PubMed  Google Scholar 

  75. Qu L, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, Yuan P, Yu Y, Tian F, Liu Z, Bao Y, Zhao Y, Wei W. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol 2019; 37(9): 1059–1069

    Article  CAS  PubMed  Google Scholar 

  76. Yi Z, Qu L, Tang H, Liu Z, Liu Y, Tian F, Wang C, Zhang X, Feng Z, Yu Y, Yuan P, Yi Z, Zhao Y, Wei W. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 2022; 40(6): 946–955

    Article  CAS  PubMed  Google Scholar 

  77. Kannan S, Altae-Tran H, Jin X, Madigan VJ, Oshiro R, Makarova KS, Koonin EV, Zhang F. Compact RNA editors with small Cas13 proteins. Nat Biotechnol 2022; 40(2): 194–197

    Article  CAS  PubMed  Google Scholar 

  78. Huang X, Lv J, Li Y, Mao S, Li Z, Jing Z, Sun Y, Zhang X, Shen S, Wang X, Di M, Ge J, Huang X, Zuo E, Chi T. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J 2020; 39(22): e104741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han W, Huang W, Wei T, Ye Y, Mao M, Wang Z. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Res 2022; 50(16): 9580–9595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ichinose M, Kawabata M, Akaiwa Y, Shimajiri Y, Nakamura I, Tamai T, Nakamura T, Yagi Y, Gutmann B. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun Biol 2022; 5(1): 968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023; 24(3): 161–177

    Article  CAS  PubMed  Google Scholar 

  82. Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X. Efficient generation of mouse models with the prime editing system. Cell Discov 2020; 6(1): 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qian Y, Zhao D, Sui T, Chen M, Liu Z, Liu H, Zhang T, Chen S, Lai L, Li Z. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system. Cell Discov 2021; 7(1): 50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Petri K, Zhang W, Ma J, Schmidts A, Lee H, Horng JE, Kim DY, Kurt IC, Clement K, Hsu JY, Pinello L, Maus MV, Joung JK, Yeh JJ. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat Biotechnol 2022; 40(2): 189–193

    Article  CAS  PubMed  Google Scholar 

  85. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, Chen C, Nelson JW, Newby GA, Sahin M, Osborn MJ, Weissman JS, Adamson B, Liu DR. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021; 184(22): 5635–5652.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu P, Liang SQ, Zheng C, Mintzer E, Zhao YG, Ponnienselvan K, Mir A, Sontheimer EJ, Gao G, Flotte TR, Wolfe SA, Xue W. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 2021; 12(1): 2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song M, Lim JM, Min S, Oh JS, Kim DY, Woo JS, Nishimasu H, Cho SR, Yoon S, Kim HH. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat Commun 2021; 12(1): 5617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu Y, Yang G, Huang S, Li X, Wang X, Li G, Chi T, Chen Y, Huang X, Wang X. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res 2021; 31(10): 1134–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, Anzalone AV, An M, Newby GA, Chen JC, Hsu A, Liu DR. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022; 40(3): 402–410

    Article  CAS  PubMed  Google Scholar 

  90. Park SJ, Jeong TY, Shin SK, Yoon DE, Lim SY, Kim SP, Choi J, Lee H, Hong JI, Ahn J, Seong JK, Kim K. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 2021; 22(1): 170

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhuang Y, Liu J, Wu H, Zhu Q, Yan Y, Meng H, Chen PR, Yi C. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol 2022; 18(1): 29–37

    Article  CAS  PubMed  Google Scholar 

  92. Tao R, Wang Y, Jiao Y, Hu Y, Li L, Jiang L, Zhou L, Qu J, Chen Q, Yao S. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res 2022; 50(11): 6423–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang X, Li J, Wang Y, Yang B, Wei J, Wu J, Wang R, Huang X, Chen J, Yang L. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 2018; 36(10): 946–949

    Article  CAS  PubMed  Google Scholar 

  94. Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu JL, Gao C. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 2018; 36(10): 950–953

    Article  CAS  Google Scholar 

  95. Liu Z, Chen S, Shan H, Zhang Q, Chen M, Lai L, Li Z. Efficient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discov 2019; 5(1): 31

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang X, Ding C, Yu W, Wang Y, He S, Yang B, Xiong YC, Wei J, Li J, Liang J, Lu Z, Zhu W, Wu J, Zhou Z, Huang X, Liu Z, Yang L, Chen J. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep 2020; 31(9): 107723

    Article  CAS  PubMed  Google Scholar 

  97. Lian M, Chen F, Huang X, Zhao X, Gou S, Li N, Jin Q, Shi H, Liang Y, Xie J, Ge W, Zhuang Z, Wang J, Ye Y, Yang Y, Wang K, Lai L, Wu H. Improving the Cpf1-mediated base editing system by combining dCas9/dead sgRNA with human APOBEC3A variants. J Genet Genomics 2021; 48(1): 92–95

    Article  CAS  PubMed  Google Scholar 

  98. Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, Newby GA, Wilson C, Bhaumik M, Shubina-Oleinik O, Holt JR, Liu DR. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 2019; 37(9): 1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020; 38(7): 883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, Edwards A, Gehrke JM, Lee SJ, Liquori AJ, Murray R, Packer MS, Rinaldi C, Slaymaker IM, Yen J, Young LE, Ciaramella G. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 2020; 38(7): 892–900

    Article  CAS  PubMed  Google Scholar 

  101. Chen F, Lian M, Ma B, Gou S, Luo X, Yang K, Shi H, Xie J, Ge W, Ouyang Z, Lai C, Li N, Zhang Q, Jin Q, Liang Y, Chen T, Wang J, Zhao X, Li L, Yu M, Ye Y, Wang K, Wu H, Lai L. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol 2022; 5(1): 1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, Simon A, Han T, Goswami S, Montgomery E, Thibado J, Kastenhuber ER, Sánchez-Rivera FJ, Shi J, Vakoc CR, Lowe SW, Tschaharganeh DF, Dow LE. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 2018; 36(9): 888–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 2018; 36(9): 843–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang X, Chen L, Zhu B, Wang L, Chen C, Hong M, Huang Y, Li H, Han H, Cai B, Yu W, Yin S, Yang L, Yang Z, Liu M, Zhang Y, Mao Z, Wu Y, Liu M, Li D. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat Cell Biol 2020; 22(6): 740–750

    Article  CAS  PubMed  Google Scholar 

  105. Li M, Zhong A, Wu Y, Sidharta M, Beaury M, Zhao X, Studer L, Zhou T. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nat Commun 2022; 13(1): 6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, Lu Z, Zhang Y, Wu J, Huang X, Yang L, Chen J. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 2018; 36(4): 324–327

    Article  CAS  PubMed  Google Scholar 

  107. Liu Z, Chen S, Jia Y, Shan H, Chen M, Song Y, Lai L, Li Z. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Sci China Life Sci 2021; 64(8): 1355–1367

    Article  CAS  PubMed  Google Scholar 

  108. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018; 556(7699): 57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018; 361(6408): 1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, Matuszek Z, Newby GA, Rees HA, Liu DR. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 2020; 38(4): 471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 2020; 368(6488): 290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 2019; 37(3): 276–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tóth E, Varga É, Kulcsár PI, Kocsis-Jutka V, Krausz SL, Nyeste A, Welker Z, Huszár K, Ligeti Z, Tálas A, Welker E. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res 2020; 48(7): 3722–3733

    Article  PubMed  PubMed Central  Google Scholar 

  114. Huang TP, Zhao KT, Miller SM, Gaudelli NM, Oakes BL, Fellmann C, Savage DF, Liu DR. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol 2019; 37(6): 626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheng TL, Li S, Yuan B, Wang X, Zhou W, Qiu Z. Expanding CT base editing toolkit with diversified cytidine deaminases. Nat Commun 2019; 10(1): 3612

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 2019; 364(6437): 289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F, Gao C. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 2019; 364(6437): 292–295

    Article  CAS  PubMed  Google Scholar 

  118. Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R, Li Y, Zhou H, Guo F, Yang H. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 2019; 571(7764): 275–278

    Article  CAS  PubMed  Google Scholar 

  119. Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 2019; 569(7756): 433–437

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rees HA, Wilson C, Doman JL, Liu DR. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv 2019; 5(5): eaax5717

    Article  PubMed  PubMed Central  Google Scholar 

  121. Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol 2020; 38(5): 620–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, Liu DR. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 2017; 8(1): 15790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu Y, Zhou J, Lan T, Zhou X, Yang Y, Li C, Zhang Q, Chen M, Wei S, Zheng S, Cheng L, Zheng Y, Lai L, Zou Q. Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites. Cell Discov 2022; 8(1): 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou J, Liu Y, Wei Y, Zheng S, Gou S, Chen T, Yang Y, Lan T, Chen M, Liao Y, Zhang Q, Tang C, Liu Y, Wu Y, Peng X, Gao M, Wang J, Zhang K, Lai L, Zou Q. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Mol Ther 2022; 30(7): 2443–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li J, Yu W, Huang S, Wu S, Li L, Zhou J, Cao Y, Huang X, Qiao Y. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity. Nat Commun 2021; 12(1): 2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li A, Mitsunobu H, Yoshioka S, Suzuki T, Kondo A, Nishida K. Cytosine base editing systems with minimized off-target effect and molecular size. Nat Commun 2022; 13(1): 4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang L, Xue W, Zhang H, Gao R, Qiu H, Wei J, Zhou L, Lei YN, Wu X, Li X, Liu C, Wu J, Chen Q, Ma H, Huang X, Cai C, Zhang Y, Yang B, Yin H, Yang L, Chen J. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat Cell Biol 2021; 23(5): 552–563

    Article  PubMed  Google Scholar 

  128. Jeong YK, Lee S, Hwang GH, Hong SA, Park SE, Kim JS, Woo JS, Bae S. Adenine base editor engineering reduces editing of bystander cytosines. Nat Biotechnol 2021; 39(11): 1426–1433

    Article  CAS  PubMed  Google Scholar 

  129. Zhang S, Yuan B, Cao J, Song L, Chen J, Qiu J, Qiu Z, Zhao XM, Chen J, Cheng TL. TadA orthologs enable both cytosine and adenine editing of base editors. Nat Commun 2023; 14(1): 414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang S, Song L, Yuan B, Zhang C, Cao J, Chen J, Qiu J, Tai Y, Chen J, Qiu Z, Zhao XM, Cheng TL. TadA reprogramming to generate potent miniature base editors with high precision. Nat Commun 2023; 14(1): 413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jang HK, Jo DH, Lee SN, Cho CS, Jeong YK, Jung Y, Yu J, Kim JH, Woo JS, Bae S. High-purity production and precise editing of DNA base editing ribonucleoproteins. Sci Adv 2021; 7(35): eabg2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun 2022; 13(1): 597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 2017; 35(5): 435–437

    Article  CAS  PubMed  Google Scholar 

  134. Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 2017; 3(8): eaao4774

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kim HS, Jeong YK, Hur JK, Kim JS, Bae S. Adenine base editors catalyze cytosine conversions in human cells. Nat Biotechnol 2019; 37(10): 1145–1148

    Article  CAS  PubMed  Google Scholar 

  136. Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y, Chen J, Sun Q, Huang X. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 2018; 9(1): 2338

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lee HK, Willi M, Miller SM, Kim S, Liu C, Liu DR, Hennighausen L. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 2018; 9(1): 4804

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 2017; 35(4): 371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zuo E, Sun Y, Yuan T, He B, Zhou C, Ying W, Liu J, Wei W, Zeng R, Li Y, Yang H. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat Methods 2020; 17(6): 600–604

    Article  CAS  PubMed  Google Scholar 

  140. Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, Yang J, Bai S, Huang Y, Meng H, Wu H, Luan C, Zhu B, Ru G, Gao H, Zhong L, Liu M, Liu M, Cheng Y, Yi C, Wang L, Zhao Y, Song G, Li D. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol 2023; 19(1): 101–110

    Article  CAS  PubMed  Google Scholar 

  141. Tan J, Zhang F, Karcher D, Bock R. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun 2019; 10(1): 439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gehrke JM, Cervantes O, Clement MK, Wu Y, Zeng J, Bauer DE, Pinello L, Joung JK. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 2018; 36(10): 977–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther 2010; 18(1): 80–86

    Article  CAS  PubMed  Google Scholar 

  144. Chen S, Liu Z, Xie W, Yu H, Lai L, Li Z. Compact cje3Cas9 for efficient in vivo genome editing and adenine base editing. CRISPR J 2022; 5(3): 472–486

    Article  CAS  PubMed  Google Scholar 

  145. Davis JR, Wang X, Witte IP, Huang TP, Levy JM, Raguram A, Banskota S, Seidah NG, Musunuru K, Liu DR. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat Biomed Eng 2022; 6(11): 1272–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kweon J, Jang AH, Kwon E, Kim U, Shin HR, See J, Jang G, Lee C, Koo T, Kim S, Kim Y. Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Exp Mol Med 2023; 55(2): 377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 2018; 24(7): 927–930

    Article  CAS  PubMed  Google Scholar 

  148. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939–946

    Article  CAS  PubMed  Google Scholar 

  149. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018; 36(8): 765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8(1): 15464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K, Wei X, Mammadov R, Adli M. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods 2017; 14(7): 710–712

    Article  CAS  PubMed  Google Scholar 

  152. Billon P, Bryant EE, Joseph SA, Nambiar TS, Hayward SB, Rothstein R, Ciccia A. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell 2017; 67(6): 1068–1079.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang X, Liu Z, Li G, Dang L, Huang S, He L, Ma Y, Li C, Liu M, Yang G, Huang X, Zhou F, Ma X. Efficient gene silencing by adenine base editor-mediated start codon mutation. Mol Ther 2020; 28(2): 431–440

    Article  CAS  PubMed  Google Scholar 

  154. Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos C MA, Winter J, Perez-Pinera P, Gaj T. Treatment of a mouse model of ALS by in vivo base editing. Mol Ther 2020; 28(4): 1177–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tanaka S, Yoshioka S, Nishida K, Hosokawa H, Kakizuka A, Maegawa S. In vivo targeted single-nucleotide editing in zebrafish. Sci Rep 2018; 8(1): 11423

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ma L, Boucher JI, Paulsen J, Matuszewski S, Eide CA, Ou J, Eickelberg G, Press RD, Zhu LJ, Druker BJ, Branford S, Wolfe SA, Jensen JD, Schiffer CA, Green MR, Bolon DN. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc Natl Acad Sci USA 2017; 114(44): 11751–11756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang X, Liang Y, Zhao J, Li Y, Gou S, Zheng M, Zhou J, Zhang Q, Mi J, Lai L. Generation of permanent neonatal diabetes mellitus dogs with glucokinase point mutations through base editing. Cell Discov 2021; 7(1): 92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3(4): 285–298

    Article  CAS  PubMed  Google Scholar 

  159. Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011; 12(10): 715–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, Li J, Zhang Y, Song B, Sun X, Ding Q, Song Y, Chang X. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell 2018; 72(2): 380–394.e7

    Article  CAS  PubMed  Google Scholar 

  161. Winter J, Luu A, Gapinske M, Manandhar S, Shirguppe S, Woods WS, Song JS, Perez-Pinera P. Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov 2019; 5(1): 41

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kluesner MG, Lahr WS, Lonetree CL, Smeester BA, Qiu X, Slipek NJ, Claudio Vázquez PN, Pitzen SP, Pomeroy EJ, Vignes MJ, Lee SC, Bingea SP, Andrew AA, Webber BR, Moriarity BS. CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nat Commun 2021; 12(1): 2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E, Kim JS. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 2018; 36(6): 536–539

    Article  CAS  PubMed  Google Scholar 

  164. Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, Raguram A, Richter MF, Zhao KT, Levy JM, Shen MW, Arnold WD, Wang D, Xie J, Gao G, Burghes AHM, Liu DR. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380(6642): eadg6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gapinske M, Luu A, Winter J, Woods WS, Kostan KA, Shiva N, Song JS, Perez-Pinera P. CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol 2018; 19(1): 107

    Article  PubMed  PubMed Central  Google Scholar 

  166. Xu P, Liu Z, Liu Y, Ma H, Xu Y, Bao Y, Zhu S, Cao Z, Wu Z, Zhou Z, Wei W. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat Biotechnol 2021; 39(11): 1403–1413

    Article  CAS  PubMed  Google Scholar 

  167. Chan AW. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2013; 54(2): 211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang Y, Qin W, Lu X, Xu J, Huang H, Bai H, Li S, Lin S. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun 2017; 8(1): 118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Qin W, Lu X, Liu Y, Bai H, Li S, Lin S. Precise A•T to G•C base editing in the zebrafish genome. BMC Biol 2018; 16(1): 139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Park DS, Yoon M, Kweon J, Jang AH, Kim Y, Choi SC. Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos. Mol Cells 2017; 40(11): 823–827

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Li Q, Li Y, Yang S, Huang S, Yan M, Ding Y, Tang W, Lou X, Yin Q, Sun Z, Lu L, Shi H, Wang H, Chen Y, Li J. CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat Cell Biol 2018; 20(11): 1315–1325

    Article  CAS  PubMed  Google Scholar 

  172. Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC. Introduction of pathogenic mutations into the mouse Psen1 gene by base editor and Target-AID. Nat Commun 2018; 9(1): 2892

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, Duan Q, Hu H, Zheng R, Wei Y, Peng L, Han H, Zhang J, Qiu W, Geng H, Siwko S, Zhang X, Liu M, Li D. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 2018; 9(9): 814–819

    Article  PubMed  PubMed Central  Google Scholar 

  174. Liu Z, Chen S, Shan H, Jia Y, Chen M, Song Y, Lai L, Li Z. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death Dis 2020; 11(1): 36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li Z, Duan X, An X, Feng T, Li P, Li L, Liu J, Wu P, Pan D, Du X, Wu S. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discov 2018; 4(1): 64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xie J, Ge W, Li N, Liu Q, Chen F, Yang X, Huang X, Ouyang Z, Zhang Q, Zhao Y, Liu Z, Gou S, Wu H, Lai C, Fan N, Jin Q, Shi H, Liang Y, Lan T, Quan L, Li X, Wang K, Lai L. Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 2019; 10(1): 2852

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wang F, Zhang W, Yang Q, Kang Y, Fan Y, Wei J, Liu Z, Dai S, Li H, Li Z, Xu L, Chu C, Qu J, Si C, Ji W, Liu GH, Long C, Niu Y. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 2020; 11(11): 809–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Vafai SB, Mootha VK. Mitochondrial disorders as windows into an ancient organelle. Nature 2012; 491(7424): 374–383

    Article  CAS  PubMed  Google Scholar 

  179. Gopal RK, Calvo SE, Shih AR, Chaves FL, McGuone D, Mick E, Pierce KA, Li Y, Garofalo A, Van Allen EM, Clish CB, Oliva E, Mootha VK. Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc Natl Acad Sci USA 2018; 115(27): E6283–E6290

    Article  PubMed  PubMed Central  Google Scholar 

  180. Guo J, Chen X, Liu Z, Sun H, Zhou Y, Dai Y, Ma Y, He L, Qian X, Wang J, Zhang J, Zhu Y, Zhang J, Shen B, Zhou F. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol Ther Nucleic Acids 2022; 27: 73–80

    Article  CAS  PubMed  Google Scholar 

  181. Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, Fingerhut R, Häberle J, Matos J, Robinson MD, Thöny B, Schwank G. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 2018; 24(10): 1519–1525

    Article  CAS  PubMed  Google Scholar 

  182. Chadwick AC, Wang X, Musunuru K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol 2017; 37(9): 1741–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, Amaonye M, Beach A, Berth K, Biswas S, Braun MC, Chen HM, Colace TV, Ganey JD, Gangopadhyay SA, Garrity R, Kasiewicz LN, Lavoie J, Madsen JA, Matsumoto Y, Mazzola AM, Nasrullah YS, Nneji J, Ren H, Sanjeev A, Shay M, Stahley MR, Fan SHY, Tam YK, Gaudelli NM, Ciaramella G, Stolz LE, Malyala P, Cheng CJ, Rajeev KG, Rohde E, Bellinger AM, Kathiresan S. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021; 593(7859): 429–434

    Article  CAS  PubMed  Google Scholar 

  184. Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA 2nd, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021; 39(8): 949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020; 4(1): 97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med 2020; 12(546): eaay9101

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR. In vivo base editing of post-mitotic sensory cells. Nat Commun 2018; 9(1): 2184

    Article  PubMed  PubMed Central  Google Scholar 

  188. Suh S, Choi EH, Leinonen H, Foik AT, Newby GA, Yeh WH, Dong Z, Kiser PD, Lyon DC, Liu DR, Palczewski K. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng 2021; 5(2): 169–178

    Article  CAS  PubMed  Google Scholar 

  189. Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, Newby GA, Doherty SP, Narisu N, Sheng Q, Krilow C, Lin CY, Gordon LB, Cao K, Collins FS, Brown JD, Liu DR. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021; 589(7843): 608–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xu L, Zhang C, Li H, Wang P, Gao Y, Mokadam NA, Ma J, Arnold WD, Han R. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun 2021; 12(1): 3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, Li Y, Sheppard-Tillman H, Porter SN, Yao Y, Mayberry K, Everette KA, Jang Y, Podracky CJ, Thaman E, Lechauve C, Sharma A, Henderson JM, Richter MF, Zhao KT, Miller SM, Wang T, Koblan LW, McCaffrey AP, Tisdale JF, Kalfa TA, Pruett-Miller SM, Tsai SQ, Weiss MJ, Liu DR. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021; 595(7866): 295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wienert B, Martyn GE, Funnell APW, Quinlan KGR, Crossley M. Wake-up sleepy gene: reactivating fetal globin forβ-hemoglobinopathies. Trends Genet 2018; 34(12): 927–940

    Article  CAS  PubMed  Google Scholar 

  193. Zeng J, Wu Y, Ren C, Bonanno J, Shen AH, Shea D, Gehrke JM, Clement K, Luk K, Yao Q, Kim R, Wolfe SA, Manis JP, Pinello L, Joung JK, Bauer DE. Therapeutic base editing of human hematopoietic stem cells. Nat Med 2020; 26(4): 535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liao J, Chen S, Hsiao S, Jiang Y, Yang Y, Zhang Y, Wang X, Lai Y, Bauer DE, Wu Y. Therapeutic adenine base editing of human hematopoietic stem cells. Nat Commun 2023; 14(1): 207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nishiyama T, Zhang Y, Cui M, Li H, Sanchez-Ortiz E, McAnally JR, Tan W, Kim J, Chen K, Xu L, Bassel-Duby R, Olson EN. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med 2022; 14(672): eade1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lebek S, Chemello F, Caravia XM, Tan W, Li H, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 2023; 379(6628): 179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chai AC, Cui M, Chemello F, Li H, Chen K, Tan W, Atmanli A, McAnally JR, Zhang Y, Xu L, Liu N, Bassel-Duby R, Olson EN. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med 2023; 29(2): 401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Reichart D, Newby GA, Wakimoto H, Lun M, Gorham JM, Curran JJ, Raguram A, DeLaughter DM, Conner DA, Marsiglia JDC, Kohli S, Chmatal L, Page DC, Zabaleta N, Vandenberghe L, Liu DR, Seidman JG, Seidman C. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 2023; 29(2): 412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2016; 26(1): 52–64

    Article  CAS  PubMed  Google Scholar 

  200. Hustedt N, Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol 2017; 19(1): 1–9

    Article  CAS  Google Scholar 

  201. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154–156

    Article  CAS  PubMed  Google Scholar 

  202. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264–1272

    Article  CAS  PubMed  Google Scholar 

  203. Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB, Ingelsson E. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ Genom Precis Med 2018; 11(7): e002162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yin S, Zhang M, Liu Y, Sun X, Guan Y, Chen X, Yang L, Huo Y, Yang J, Zhang X, Han H, Zhang J, Xiao MM, Liu M, Hu J, Wang L, Li D. Engineering of efficiency-enhanced Cas9 and base editors with improved gene therapy efficacies. Mol Ther 2023; 31(3): 744–759

    Article  CAS  PubMed  Google Scholar 

  205. Lee RG, Mazzola AM, Braun MC, Platt C, Vafai SB, Kathiresan S, Rohde E, Bellinger AM, Khera AV. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. Circulation 2023; 147(3): 242–253

    Article  CAS  PubMed  Google Scholar 

  206. Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y, Wang X, Zhou D, Yuan T, Huo X, Lai J, Yang H. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 2021; 18(5): 499–506

    Article  CAS  PubMed  Google Scholar 

  207. Li G, Jin M, Li Z, Xiao Q, Lin J, Yang D, Liu Y, Wang X, Xie L, Ying W, Wang H, Zuo E, Shi L, Wang N, Chen W, Xu C, Yang H. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J Clin Invest 2023; 133(3): e162809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang X, Zhang R, Yang D, Li G, Fan Z, Du H, Wang Z, Liu Y, Lin J, Wu X, Shi L, Yang H, Zhou Y. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv Sci (Weinh) 2023; [Epub ahead of print] doi: https://doi.org/10.1002/advs.202206813

  209. Reautschnig P, Wahn N, Wettengel J, Schulz AE, Latifi N, Vogel P, Kang TW, Pfeiffer LS, Zarges C, Naumann U, Zender L, Li JB, Stafforst T. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat Biotechnol 2022; 40(5): 759–768

    Article  CAS  PubMed  Google Scholar 

  210. Monian P, Shivalila C, Lu G, Shimizu M, Boulay D, Bussow K, Byrne M, Bezigian A, Chatterjee A, Chew D, Desai J, Favaloro F, Godfrey J, Hoss A, Iwamoto N, Kawamoto T, Kumarasamy J, Lamattina A, Lindsey A, Liu F, Looby R, Marappan S, Metterville J, Murphy R, Rossi J, Pu T, Bhattarai B, Standley S, Tripathi S, Yang H, Yin Y, Yu H, Zhou C, Apponi LH, Kandasamy P, Vargeese C. Endogenous ADAR-mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides. Nat Biotechnol 2022; 40(7): 1093–1102

    Article  CAS  PubMed  Google Scholar 

  211. Katrekar D, Yen J, Xiang Y, Saha A, Meluzzi D, Savva Y, Mali P. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat Biotechnol 2022; 40(6): 938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Song J, Dong L, Sun H, Luo N, Huang Q, Li K, Shen X, Jiang Z, Lv Z, Peng L, Zhang M, Wang K, Liu K, Hong J, Yi C. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol Cell 2023; 83(1): 139–155.e9

    Article  CAS  PubMed  Google Scholar 

  213. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM. Mitochondrial diseases. Nat Rev Dis Primers 2016; 2(1): 16080

    Article  PubMed  Google Scholar 

  214. Reeve AK, Krishnan KJ, Turnbull D. Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 2008; 1147(1): 21–29

    Article  CAS  PubMed  Google Scholar 

  215. Santos C, Martínez M, Lima M, Hao YJ, Simões N, Montiel R, Martinez M, Lima M. Mitochondrial DNA mutations in cancer: a review. Curr Top Med Chem 2008; 8(15): 1351–1366

    Article  CAS  PubMed  Google Scholar 

  216. Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13(621): eabd5758

    Article  CAS  PubMed  Google Scholar 

  217. Lin Y, Li J, Li C, Tu Z, Li S, Li XJ, Yan S. Application of CRISPR/Cas9 system in establishing large animal models. Front Cell Dev Biol 2022; 10: 919155

    Article  PubMed  PubMed Central  Google Scholar 

  218. Yin P, Li S, Li XJ, Yang W. New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell 2022; 13(10): 707–720

    Article  PubMed  PubMed Central  Google Scholar 

  219. Tong S, Moyo B, Lee CM, Leong K, Bao G. Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater 2019; 4(11): 726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yip BH. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 2020; 10(6): 839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell 2022; 185(15): 2806–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38(7): 845–855

    Article  CAS  PubMed  Google Scholar 

  223. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 2016; 33(5): 581–588

    Article  PubMed  PubMed Central  Google Scholar 

  225. Li G, Liu Y, Zeng Y, Li J, Wang L, Yang G, Chen D, Shang X, Chen J, Huang X, Liu J. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 2017; 8(10): 776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 2017; 292(3): 525–533

    Article  CAS  PubMed  Google Scholar 

  227. Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y, Wang Y, Fang J, Liu D, Songyang Z, Zhou C, Huang J. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 2017; 8(11): 811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J, Huang X. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther 2018; 26(11): 2631–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang M, Zhou C, Wei Y, Xu C, Pan H, Ying W, Sun Y, Sun Y, Xiao Q, Yao N, Zhong W, Li Y, Wu K, Yuan G, Mitalipov S, Chen ZJ, Yang H. Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biol 2019; 20(1): 101

    Article  PubMed  PubMed Central  Google Scholar 

  230. Wei YH, Zhang ML, Hu J, Zhou YS, Xue MX, Yin JH, Liu YH, Feng H, Zhou L, Li ZF, Wang DS, Zhang ZG, Zhou Y, Liu HB, Yao N, Zuo ER, Hu JZ, Du YZ, Li W, Xu CL, Yang H. Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor. Protein Cell 2023; 14(6): 416–432

    PubMed  Google Scholar 

  231. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16(6): 1073–1080

    Article  CAS  PubMed  Google Scholar 

  232. Tornabene P, Trapani I. Can adeno-associated viral vectors deliver effectively large genes? Hum Gene Ther 2020; 31(1–2): 47–56

    Article  CAS  PubMed  Google Scholar 

  233. Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy? Gene Ther 2021; 28(9): 549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyüz L, Reinke P, Volk HD, Schmueck-Henneresse M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 2019; 25(2): 242–248

    Article  CAS  PubMed  Google Scholar 

  235. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122(1): 23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022; 23(5): 265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther 2017; 25(7): 1467–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 2018; 171: 207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Song CQ, Jiang T, Richter M, Rhym LH, Koblan LW, Zafra MP, Schatoff EM, Doman JL, Cao Y, Dow LE, Zhu LJ, Anderson DG, Liu DR, Yin H, Xue W. Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng 2020; 4(1): 125–130

    Article  CAS  PubMed  Google Scholar 

  240. Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, Wang X, Nielsen SC, Newby GA, Randolph PB, Osborn MJ, Musunuru K, Palczewski K, Liu DR. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022; 185(2): 250–265.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lyu P, Wang L, Lu B. Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. Life (Basel) 2020; 10(12): 366

    CAS  PubMed  Google Scholar 

  242. Ling S, Yang S, Hu X, Yin D, Dai Y, Qian X, Wang D, Pan X, Hong J, Sun X, Yang H, Paludan SR, Cai Y. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 2021; 5(2): 144–156

    Article  CAS  PubMed  Google Scholar 

  243. Chandler RJ, Sands MS, Venditti CP. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum Gene Ther 2017; 28(4): 314–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kreitz J, Friedrich MJ, Guru A, Lash B, Saito M, Macrae RK, Zhang F. Programmable protein delivery with a bacterial contractile injection system. Nature 2023; 616(7956): 357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Jiang F, Shen J, Cheng J, Wang X, Yang J, Li N, Gao N, Jin Q. N-terminal signal peptides facilitate the engineering of PVC complex as a potent protein delivery system. Sci Adv 2022; 8(17): eabm2343

    Article  Google Scholar 

  246. Huang C, Li G, Wu J, Liang J, Wang X. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biol 2021; 22(1): 80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Jun S, Lim H, Chun H, Lee JH, Bang D. Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells. Commun Biol 2020; 3(1): 154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13(11): 790–807

    Article  PubMed  PubMed Central  Google Scholar 

  249. Baron CS, van Oudenaarden A. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol 2019; 20(12): 753–765

    Article  CAS  PubMed  Google Scholar 

  250. Kebschull JM, Zador AM. Cellular barcoding: lineage tracing, screening and beyond. Nat Methods 2018; 15(11): 871–879

    Article  CAS  PubMed  Google Scholar 

  251. Ye C, Chen Z, Liu Z, Wang F, He X. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. J Genet Genomics 2020; 47(2): 85–91

    Article  PubMed  Google Scholar 

  252. Cotterell J, Vila-Cejudo M, Batlle-Morera L, Sharpe J. Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing. Development 2020; 147(9): dev184481

    Article  CAS  PubMed  Google Scholar 

  253. Akram F, Haq IU, Ali H, Laghari AT. Trends to store digital data in DNA: an overview. Mol Biol Rep 2018; 45(5): 1479–1490

    Article  CAS  PubMed  Google Scholar 

  254. Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nat Rev Genet 2019; 20(8): 456–466

    Article  CAS  PubMed  Google Scholar 

  255. Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 2018; 360(6385): eaap8992

    Article  PubMed  PubMed Central  Google Scholar 

  256. Farzadfard F, Gharaei N, Higashikuni Y, Jung G, Cao J, Lu TK. Single-nucleotide-resolution computing and memory in living cells. Mol Cell 2019; 75(4): 769–780.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kingwell K. Base editors hit the clinic. Nat Rev Drug Discov 2022; 21(8): 545–547

    Article  CAS  PubMed  Google Scholar 

  258. Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y, Kremers GJ, van Cappellen WA, Horst-Kreft D, Laffeber C, Lebbink JHG, Bruens S, Gaskin D, Beerens D, Klunder M, Joosten R, Demmers JAA, van Gent D, Mouton JW, van der Spek PJ, van der Oost J, van Baarlen P, Louwen R. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Sci Adv 2020; 6(25): eaaz4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Xu S, Kim J, Tang Q, Chen Q, Liu J, Xu Y, Fu X. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway. Protein Cell 2020; 11(5): 352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Enache OM, Rendo V, Abdusamad M, Lam D, Davison D, Pal S, Currimjee N, Hess J, Pantel S, Nag A, Thorner AR, Doench JG, Vazquez F, Beroukhim R, Golub TR, Ben-David U. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 2020; 52(7): 662–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Cyranoski D, Ledford H. Genome-edited baby claim provokes international outcry. Nature 2018; 563(7733): 607–608

    Article  CAS  PubMed  Google Scholar 

  262. Jin S, Fei H, Zhu Z, Luo Y, Liu J, Gao S, Zhang F, Chen YH, Wang Y, Gao C. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol Cell 2020; 79(5): 728–740.e6

    Article  CAS  PubMed  Google Scholar 

  263. Liu Z, Chen M, Shan H, Chen S, Xu Y, Song Y, Zhang Q, Yuan H, Ouyang H, Li Z, Lai L. Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cell Mol Life Sci 2019; 76(20): 4155–4164

    Article  CAS  PubMed  Google Scholar 

  264. Lin Q, Jin S, Zong Y, Yu H, Zhu Z, Liu G, Kou L, Wang Y, Qiu JL, Li J, Gao C. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 2021; 39(8): 923–927

    Article  CAS  PubMed  Google Scholar 

  265. Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, Leith A, Daza RM, Martin B, Shendure J. Precise genomic deletions using paired prime editing. Nat Biotechnol 2022; 40(2): 218–226

    Article  CAS  PubMed  Google Scholar 

  266. Jiang T, Zhang XO, Weng Z, Xue W. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 2022; 40(2): 227–234

    Article  CAS  PubMed  Google Scholar 

  267. Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, Levy JM, Mercer JAM, Liu DR. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2022; 40(5): 731–740

    Article  CAS  PubMed  Google Scholar 

  268. Kweon J, Yoon JK, Jang AH, Shin HR, See JE, Jang G, Kim JI, Kim Y. Engineered prime editors with PAM flexibility. Mol Ther 2021; 29(6): 2001–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhi S, Chen Y, Wu G, Wen J, Wu J, Liu Q, Li Y, Kang R, Hu S, Wang J, Liang P, Huang J. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther 2022; 30(1): 283–294

    Article  CAS  PubMed  Google Scholar 

  270. Grünewald J, Miller BR, Szalay RN, Cabeceiras PK, Woodilla CJ, Holtz EJB, Petri K, Joung JK. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nat Biotechnol 2023; 41(3): 337–343

    Article  PubMed  Google Scholar 

  271. Li H, Cheng W, Chen B, Pu S, Fan N, Zhang X, Jiao D, Shi D, Guo J, Li Z, Qing Y, Jia B, Zhao HY, Wei HJ. Efficient generation of P53 biallelic mutations in diannan miniature pigs using RNA-guided base editing. Life (Basel) 2021; 11(12): 1417

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 32100410); National Key Research and Development Program of China (No. 2022YFA1105403); Science and Technology Program of Guangzhou (Nos. 202201010409 and 2023A04J0732); Major Science and Technology Project of Hainan Province (No. ZDKJ2021030); 2020 Research Program of Sanya Yazhou Bay Science and Technology City (No. 202002011); Science and Technology Planning Project of Guangdong Province, China (Nos. 2020B1212060052 and 2021B1212040016); Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (No. 2019-I2M-5-025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangxue Lai.

Ethics declarations

Yanhui Liang, Fangbing Chen, Kepin Wang, and Liangxue Lai declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Chen, F., Wang, K. et al. Base editors: development and applications in biomedicine. Front. Med. 17, 359–387 (2023). https://doi.org/10.1007/s11684-023-1013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-1013-y

Keywords

Navigation