Skip to main content
Log in

Microorganism-derived biological macromolecules for tissue engineering

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staudt C, Horn H, Hempel DC, Neu TR. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 2004; 88(5): 585–592

    Article  CAS  PubMed  Google Scholar 

  2. Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 2012; 13(11): 14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6: 496

    Article  PubMed  PubMed Central  Google Scholar 

  4. Geesey G. Microbial exopolymers: ecological and economic considerations. Am Soc Microbiol News 1982; 48: 9–14

    Google Scholar 

  5. Pal A, Paul AK. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 2008; 48(1): 49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sutherland IW. Biotechnology of Microbial Exopolysaccharides. Cambridge, UK: Cambridge University Press, 1990

    Book  Google Scholar 

  7. Roper MC, Greve LC, Labavitch JM, Kirkpatrick BC. Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta. Appl Environ Microbiol 2007; 73(22): 7252–7258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Absalon C, Van Dellen K, Watnick PI. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog 2011; 7(8): e1002210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nadell CD, Bassler BL. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc Natl Acad Sci USA 2011; 108(34): 14181–14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mandal AK, Sen IK, Maity P, Chattopadhyay S, Chakraborty R, Roy S, Islam SS. Structural elucidation and biological studies of a novel exopolysaccaride from Klebsiella pneumoniae PB12. Int J Biol Macromol 2015; 79: 413–422

    Article  CAS  PubMed  Google Scholar 

  11. Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 2011; 29(8): 388–398

    Article  CAS  PubMed  Google Scholar 

  12. Otero A, Vincenzini M. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 2003; 102(2): 143–152

    Article  CAS  PubMed  Google Scholar 

  13. Sutherland IW. Novel and established applications of microbial polysaccharides. Trends Biotechnol 1998; 16(1): 41–46

    Article  CAS  PubMed  Google Scholar 

  14. Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 2010; 8(8): 578–592

    Article  CAS  PubMed  Google Scholar 

  15. Islam ST, Lam JS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 2014; 60(11): 697–716

    Article  CAS  PubMed  Google Scholar 

  16. Morona R, Purins L, Tocilj A, Matte A, Cygler M. Sequence-structure relationships in polysaccharide co-polymerase (PCP) proteins. Trends Biochem Sci 2009; 34(2): 78–84

    Article  CAS  PubMed  Google Scholar 

  17. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 2009; 73(1): 155–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baker P, Whitfield GB, Hill PJ, Little DJ, Pestrak MJ, Robinson H, Wozniak DJ, Howell PL. Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. J Biol Chem 2015; 290(47): 28374–28387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmid J, Sieber V. Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. ChemBioChem 2015; 16(8): 1141–1147

    Article  CAS  PubMed  Google Scholar 

  20. Whitney JC, Howell PL. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 2013; 21(2): 63–72

    Article  CAS  PubMed  Google Scholar 

  21. Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378: 35–44

    Article  CAS  PubMed  Google Scholar 

  22. Willis LM, Stupak J, Richards MR, Lowary TL, Li J, Whitfield C. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci U S A 2013; 110(19): 7868–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmid J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr Opin Biotechnol 2018; 53: 130–136

    Article  CAS  PubMed  Google Scholar 

  24. Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol 2006; 38(1–2): 237–245

    Article  CAS  Google Scholar 

  25. Liu H, Fang HH. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 2002; 95(3): 249–256

    Article  CAS  PubMed  Google Scholar 

  26. Sheng GP, Yu HQ, Yu Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol 2005; 67(1): 125–130

    Article  CAS  PubMed  Google Scholar 

  27. Nouha K, Kumar RS, Balasubramanian S, Tyagi RD. Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci (China) 2018; 66: 225–245

    Article  CAS  Google Scholar 

  28. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623–633

    Article  CAS  PubMed  Google Scholar 

  29. Späth R, Flemming HC, Wuertz S. Sorption properties of biofilms. Water Sci Technol 1998; 37(4–5): 207–210

    Article  Google Scholar 

  30. Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology (Reading) 2001; 147(1): 3–9

    Article  CAS  Google Scholar 

  31. Sutherland IW. Exopolysaccharides in biofilms, flocs and related structures. Water Sci Technol 2001; 43(6): 77–86

    Article  CAS  PubMed  Google Scholar 

  32. Park C, Novak JT. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res 2007; 41(8): 1679–1688

    Article  CAS  PubMed  Google Scholar 

  33. Joshi PM, Juwarkar AA. In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 2009; 43(15): 5884–5889

    Article  CAS  PubMed  Google Scholar 

  34. Ha J, Gélabert A, Spormann AM, Brown GEJr. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 2010; 74(1): 1–15

    Article  CAS  Google Scholar 

  35. Zhang D, Wang J, Pan X. Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 2006; 138(3): 589–593

    Article  CAS  PubMed  Google Scholar 

  36. Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 2006; 72(3): 1988–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 2010; 28(6): 882–894

    Article  CAS  PubMed  Google Scholar 

  38. Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6(6): 637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh RS, Saini GK, Kennedy JF. Pullulan: microbial sources, production and applications. Carbohydr Polym 2008; 73(4): 515–531

    Article  CAS  PubMed  Google Scholar 

  40. Díaz-Montes E. Dextran: sources, structures, and properties. Polysaccharides 2021; 2(3): 554–565

    Article  CAS  Google Scholar 

  41. Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 2016; 6: 67

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shoda M, Sugano Y. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 2005; 10(1): 1–8

    Article  CAS  Google Scholar 

  43. Sarwat F, Ul Qader SA, Aman A, Ahmed N. Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 2008; 4(6): 379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M. Homopolysaccharides from lactic acid bacteria. Int Dairy J 2001; 11(9): 675–685

    Article  CAS  Google Scholar 

  45. Dols M, Remaud-Simeon M, Willemot RM, Vignon M, Monsan P. Characterization of the different dextransucrase activities excreted in glucose, fructose, or sucrose medium by Leuconostoc mesenteroides NRRL B-1299. Appl Environ Microbiol 1998; 64(4): 1298–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hisamatsu M, Amemura A, Matsuo T, Matsuda H, Harada T. Cyclic (1→2)-β-D-glucan and the octasaccharide repeating-unit of succinoglycan produced by Agrobacterium. Microbiology 1982; 128(8): 1873–1879

    Article  CAS  Google Scholar 

  47. Saito H, Misaki A, Harada T. A comparison of the structure of curdlan and pachyman. Agric Biol Chem 1968; 32(10): 1261–1269

    Article  CAS  Google Scholar 

  48. Dhiya C, Benny IS, Gunasekar V, Ponnusami V. A review on development of fermentative production of curdlan. Int J Chemtech Res 2014; 6: 2769–2773

    Google Scholar 

  49. Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 2003; 62(5–6): 468–473

    Article  CAS  PubMed  Google Scholar 

  50. U.S. Congress, Office of Technology Assessment. Biopolymers: Making Materials Nature’s Way-Background Paper. OTA-BP-E-102. Washington, DC: U.S. Government Printing Office, 1993

    Google Scholar 

  51. Czaja W, Krystynowicz A, Bielecki S, Brown RMJr. Microbial cellulose—the natural power to heal wounds. Biomaterials 2006; 27(2): 145–151

    Article  CAS  PubMed  Google Scholar 

  52. Dixon B, Abbot P, Verger P, Pascal G, DiNovi M. Pullulan. In: Safety Evaluation of Certain Food Additives. Geneva: World Health Organization, 2004: 45–62

    Google Scholar 

  53. Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem 1934; 107(3): 629–634

    Article  CAS  Google Scholar 

  54. Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 2007; 29(1): 17–25

    Article  CAS  PubMed  Google Scholar 

  55. Cowman MK, Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr Res 2005; 340(5): 791–809

    Article  CAS  PubMed  Google Scholar 

  56. Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev 1991; 55(1): 35–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones D. Crystalline modifications of cellulose. Part V. A crystallographic study of ordered molecular arrangements. J Polym Sci e 1960; 42(139): 173–188

    Article  CAS  Google Scholar 

  58. Bakhshinejad B, Sadeghizadeh M. Bacteriophages and development of nanomaterials for neural regeneration. Neural Regen Res 2014; 9(22): 1955–1958

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yoo SY, Kobayashi M, Lee PP, Lee SW. Early osteogenic differentiation of mouse preosteoblasts induced by collagen-derived DGEA-peptide on nanofibrous phage tissue matrices. Biomacromolecules 2011; 12(4): 987–996

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18–23

    Article  Google Scholar 

  61. Patel S, Kasoju N, Bora U, Goyal A. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresour Technol 2010; 101(17): 6852–6855

    Article  CAS  PubMed  Google Scholar 

  62. Kanke M, Tanabe E, Katayama H, Koda Y, Yoshitomi H. Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro. Biol Pharm Bull 1995; 18(8): 1154–1158

    Article  CAS  PubMed  Google Scholar 

  63. Kanke M, Koda K, Koda Y, Katayama H. Application of curdlan to controlled drug delivery. I. The preparation and evaluation of theophylline-containing curdlan tablets. Pharm Res 1992; 9(3): 414–418

    Article  CAS  PubMed  Google Scholar 

  64. Bohn JA, BeMiller JN. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 1995; 28(1): 3–14

    Article  CAS  Google Scholar 

  65. Williams PA. Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters. Cambridge, UK: Royal Society of Chemistry, 2011

    Book  Google Scholar 

  66. Rekha M, Sharma CP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 2007; 20: 116–121

    Google Scholar 

  67. Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000; 182(12): 3593–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 1999; 181(19): 5993–6002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37(1): 318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Christensen TE, Saxtrup O, Hansen TI, Kristensen BH, Beck BL, Plesner T, Krogh IM, Andersen V, Strandgaard S. Familial myoglobinuria. A study of muscle and kidney pathophysiology in three brothers. Dan Med Bull 1983; 30(2): 112–115

    CAS  PubMed  Google Scholar 

  71. Davenport DS, Massanari RM, Pfaller MA, Bale MJ, Streed SA, Hierholzer WJJr. Usefulness of a test for slime production as a marker for clinically significant infections with coagulase-negative staphylococci. J Infect Dis 1986; 153(2): 332–339

    Article  CAS  PubMed  Google Scholar 

  72. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24(24): 4337–4351

    Article  CAS  PubMed  Google Scholar 

  73. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002; 7(10): 569–579

    Article  CAS  PubMed  Google Scholar 

  74. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 2003; 100(9): 5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 2006; 18(11): 1345–1360

    Article  CAS  Google Scholar 

  76. Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. J Mater Sci Mater Med 2020; 31(11): 101

    Article  CAS  PubMed  Google Scholar 

  77. Cutiongco MF, Tan MH, Ng MY, Le Visage C, Yim EK. Composite pullulan-dextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: a platform with enhanced cell interaction and spatial distribution. Acta Biomater 2014; 10(10): 4410–4418

    Article  CAS  PubMed  Google Scholar 

  78. Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 2012; 13(11): 14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Unnithan AR, Sasikala AR, Murugesan P, Gurusamy M, Wu D, Park CH, Kim CS. Electrospun polyurethane-dextran nanofiber mats loaded with estradiol for post-menopausal wound dressing. Int J Biol Macromol 2015; 77: 1–8

    Article  CAS  PubMed  Google Scholar 

  80. Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 2005; 26(35): 7436–7446

    Article  PubMed  CAS  Google Scholar 

  81. Lack S, Dulong V, Picton L, Le Cerf D, Condamine E. High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydr Res 2007; 342(7): 943–953

    Article  CAS  PubMed  Google Scholar 

  82. Le Visage C, Gournay O, Benguirat N, Hamidi S, Chaussumier L, Mougenot N, Flanders JA, Isnard R, Michel JB, Hatem S, Letourneur D, Norol F. Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 2012; 18(1–2): 35–44

    Article  CAS  PubMed  Google Scholar 

  83. Amedee J, Letourneur D, Le Visage C, Derkaoui SM, Fricain JC, Catros S. Porous polysaccharide scaffold comprising nanohydroxyapatite and use for bone formation. Google Patents; 2017, Universite Victor Segalen Bordeaux 2 Institut National de la Sante et de la Recherche Medicale INSERM Universite Paris Diderot Paris 7. US20130224277A1

  84. Banerjee S, Szepes M, Dibbert N, Rios-Camacho JC, Kirschning A, Gruh I, Dräger G. Dextran-based scaffolds for in-situ hydrogelation: use for next generation of bioartificial cardiac tissues. Carbohydr Polym 2021; 262: 117924

    Article  CAS  PubMed  Google Scholar 

  85. Naghieh S, Sarker MD, Abelseth E, Chen X. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J Mech Behav Biomed Mater 2019; 93: 183–193

    Article  CAS  PubMed  Google Scholar 

  86. Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, Sedighi F, Amini N, Bahrami SH, Rezapour A, Hamidi M, Delattre C. Synthesis and characterization of exopolysaccharide encapsulated PCL/gelatin skin substitute for full-thickness wound regeneration. Polymers (Basel) 2021; 13(6): 854

    Article  CAS  PubMed Central  Google Scholar 

  87. Czaja WK, Young DJ, Kawecki M, Brown RMJr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007; 8(1): 1–12

    Article  CAS  PubMed  Google Scholar 

  88. Milan PB, Amini N, Amoupour M, Amadikuchaksaraei A, Rezapour A, Sefat F, Kargozar S, Ashtari Kh, Mozafari M. Scaffolds for regeneration of dermo-epidermal skin tissue. Handbook of Tissue Engineering Scaffolds. Volume 2. Elsevier Science, 2019: 193–209

  89. Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: a novel molecule for biomedical applications. Carbohydr Polym 2017; 171: 102–121

    Article  CAS  PubMed  Google Scholar 

  90. Samoila I, Dinescu S, Pircalabioru GG, Marutescu L, Fundueanu G, Aflori M, Constantin M. Pullulan/poly(vinyl alcohol) composite hydrogels for adipose tissue engineering. Materials (Basel) 2019; 12(19): 3220

    Article  CAS  Google Scholar 

  91. Kulkarni N, Kumar L, Sorg A. Fast dissolving orally consumable films. Google Patents; 2011, Johnson and Johnson Consumer Inc. US20030206942A1

  92. Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Zhu X, Yu X, Zhou Y, Yan D. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 2016; 6(1): 20014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jin HE, Lee SW. Engineering of M13 bacteriophage for development of tissue engineering materials. Methods Mol Biol 2018; 1776: 487–502

    Article  CAS  PubMed  Google Scholar 

  94. Wang J, Wang L, Yang M, Zhu Y, Tomsia A, Mao C. Untangling the effects of peptide sequences and nanotopographies in a biomimetic niche for directed differentiation of iPSCs by assemblies of genetically engineered viral nanofibers. Nano Lett 2014; 14(12): 6850–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shin YC, Lee JH, Jin L, Kim MJ, Kim C, Hong SW, Oh JW, Han DW. Cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage/poly(lactic-co-glycolic acid) nanofibers beneficial to myoblast differentiation. J Nanosci Nanotechnol 2015; 15(10): 7907–7912

    Article  CAS  PubMed  Google Scholar 

  96. Szot-Karpińska K, Golec P, Leśniewski A, Pałys B, Marken F, Niedziółka-Jönsson J, Węgrzyn G, Łoś M. Modified filamentous bacteriophage as a scaffold for carbon nanofiber. Bioconjug Chem 2016; 27(12): 2900–2910

    Article  PubMed  CAS  Google Scholar 

  97. Aschtgen MS, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 2019; 5(1): 32

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li D, Zhu Y, Yang T, Yang M, Mao C. Bacterial flagella as an osteogenic differentiation nano-promoter. Nanoscale Horiz 2019; 4(6): 1286–1292

    Article  CAS  Google Scholar 

  99. Li D, Zhu Y, Yang T, Yang M, Mao C. Genetically engineered flagella form collagen-like ordered structures for inducing stem cell differentiation. iScience 2019; 17: 277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen Y, Long X, Lin W, Du B, Yin H, Lan W, Zhao D, Li Z, Li J, Luo F, Tan H. Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J Mater Chem B Mater Biol Med 2021; 9(2): 322–335

    Article  CAS  PubMed  Google Scholar 

  101. Sajesh KM, Jayakumar R, Nair SV, Chennazhi KP. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 2013; 62: 465–471

    Article  CAS  PubMed  Google Scholar 

  102. Yang B, Yao F, Ye L, Hao T, Zhang Y, Zhang L, Dong D, Fang W, Wang Y, Zhang X, Wang C, Li J. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells. Biomater Sci 2020; 8(11): 3173–3185

    Article  CAS  PubMed  Google Scholar 

  103. Yuan H, Zheng X, Liu W, Zhang H, Shao J, Yao J, Mao C, Hui J, Fan D. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surf B Biointerfaces 2020; 192: 111041

    Article  CAS  PubMed  Google Scholar 

  104. Rashtchian M, Hivechi A, Bahrami SH, Milan PB, Simorgh S. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr Polym 2020; 233: 115873

    Article  CAS  PubMed  Google Scholar 

  105. Tamimi M, Rajabi S, Pezeshki-Modaress M. Cardiac ECM/chitosan/ alginate ternary scaffolds for cardiac tissue engineering application. Int J Biol Macromol 2020; 164: 389–402

    Article  CAS  PubMed  Google Scholar 

  106. Ghaffari R, Salimi-Kenari H, Fahimipour F, Rabiee SM, Adeli H, Dashtimoghadam E. Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Int J Biol Macromol 2020; 148: 434–448

    Article  CAS  PubMed  Google Scholar 

  107. Innocenti Malini R, Lesage J, Toncelli C, Fortunato G, Rossi RM, Spano F. Crosslinking dextran electrospun nanofibers via borate chemistry: proof of concept for wound patches. Eur Polym J 2019; 110: 276–282

    Article  CAS  Google Scholar 

  108. Moydeen AM, Ali Padusha MS, Aboelfetoh EF, Al-Deyab SS, El-Newehy MH. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study. Int J Biol Macromol 2018; 116: 1250–1259

    Article  CAS  PubMed  Google Scholar 

  109. Dong Y, Zhao S, Lu W, Chen N, Zhu D, Li Y. Preparation and characterization of enzymatically cross-linked gelatin/cellulose nanocrystal composite hydrogels. RSC Advances 2021; 11(18): 10794–10803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao S, Emery O, Wohlhauser A, Koebel MM, Adlhart C, Malfait WJ. Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites. Mater Des 2018; 160: 294–302

    Article  CAS  Google Scholar 

  111. Nosoudi N, Oommen AJ, Stultz S, Jordan M, Aldabel S, Hohne C, Mosser J, Archacki B, Turner A, Turner P. Electrospinning live cells using gelatin and pullulan. Bioengineering (Basel) 2020; 7(1): 21

    Article  CAS  Google Scholar 

  112. Barrera JA, Trotsyuk AA, Maan ZN, Bonham CA, Larson MR, Mittermiller PA, Henn D, Chen K, Mays CJ, Mittal S, Mermin-Bunnell AM, Sivaraj D, Jing S, Rodrigues M, Kwon SH, Noishiki C, Padmanabhan J, Jiang Y, Niu S, Inayathullah M, Rajadas J, Januszyk M, Gurtner GC. Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns. Tissue Eng Part A 2021; 27(11–12): 844–856

    Article  CAS  PubMed  Google Scholar 

  113. Della Giustina G, Gandin A, Brigo L, Panciera T, Giulitti S, Sgarbossa P, D’Alessandro D, Trombi L, Danti S, Brusatin G. Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds. Mater Des 2019; 165: 107566

    Article  CAS  Google Scholar 

  114. Dalgic AD, Atila D, Karatas A, Tezcaner A, Keskin D. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Mater Sci Eng C 2019; 100: 735–746

    Article  CAS  Google Scholar 

  115. Tang S, Chi K, Xu H, Yong Q, Yang J, Catchmark JM. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr Polym 2021; 252: 117123

    Article  CAS  PubMed  Google Scholar 

  116. Yang Q, Xie Z, Hu J, Liu Y. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater Sci Eng C 2021; 128: 112319

    Article  CAS  Google Scholar 

  117. Cai Y, Johnson M, A S, Xu Q, Tai H, Wang W. A hybrid injectable and self-healable hydrogel system as 3D cell culture scaffold. Macromol Biosci 2021; 21(9): e2100079

    Article  PubMed  CAS  Google Scholar 

  118. Lee AK, Lin YH, Tsai CH, Chang WT, Lin TL, Shie MY. Digital light processing bioprinted human chondrocyte-laden poly (γ-glutamic acid)/hyaluronic acid bio-ink towards cartilage tissue engineering. Biomedicines 2021; 9(7): 714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tarrahi R, Khataee A, Karimi A, Golizadeh M, Ebadi Fard Azar F. Development of a cellulose-based scaffold for sustained delivery of curcumin. Int J Biol Macromol 2021; 183: 132–144

    Article  CAS  PubMed  Google Scholar 

  120. Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, Liu Y, Li D, Zou J, Sun D, Torre V, Zhang Q, Chai R, Tang M. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces 2021; 200: 111590

    Article  CAS  PubMed  Google Scholar 

  121. Priya G, Madhan B, Narendrakumar U, Suresh Kumar RV, Manjubala I. In vitro and in vivo evaluation of carboxymethyl cellulose scaffolds for bone tissue engineering applications. ACS Omega 2021; 6(2): 1246–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wahid F, Zhao XJ, Zhao XQ, Ma XF, Xue N, Liu XZ, Wang FP, Jia SR, Zhong C. Fabrication of bacterial cellulose-based dressings for promoting infected wound healing. ACS Appl Mater Interfaces 2021; 13(28): 32716–32728

    Article  CAS  PubMed  Google Scholar 

  123. Han Y, Li C, Cai Q, Bao X, Tang L, Ao H, Liu J, Jin M, Zhou Y, Wan Y, Liu Z. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomed Mater 2020; 15(3): 035022

    Article  CAS  PubMed  Google Scholar 

  124. Szot-Karpińska K, Leśniewski A, Jönsson-Niedziółka M, Marken F, Niedziółka-Jönsson J. Electrodes modified with bacteriophages and carbon nanofibres for cysteine detection. Sens Actuators B Chem 2019; 287: 78–85

    Article  CAS  Google Scholar 

  125. Cheng W, Zhang Z, Xu R, Cai P, Kristensen P, Chen M, Huang Y. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J Biomed Mater Res B Appl Biomater 2018; 106(7): 2588–2595

    Article  CAS  PubMed  Google Scholar 

  126. Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, Sabour PM. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 2008; 74(15): 4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee JY, Chung WJ, Kim G. A mechanically improved virus-based hybrid scaffold for bone tissue regeneration. RSC Advances 2016; 6(60): 55022–55032

    Article  CAS  Google Scholar 

  128. Gallo N, Nasser H, Salvatore L, Natali ML, Campa L, Mahmoud M, Capobianco L, Sannino A, Madaghiele M. Hyaluronic acid for advanced therapies: Promises and challenges. Eur Polym J 2019; 117: 134–147

    Article  CAS  Google Scholar 

  129. Sun G, Kusuma S, Gerecht S. Development of a biodegradable, temperature-sensitive dextran-based polymer as a cell-detaching substrate. Macromol Biosci 2012; 12(1): 21–28

    Article  CAS  PubMed  Google Scholar 

  130. Curvello R, Raghuwanshi VS, Garnier G. Engineering nanocellulose hydrogels for biomedical applications. Adv Colloid Interface Sci 2019; 267: 47–61

    Article  CAS  PubMed  Google Scholar 

  131. Szekalska M, Puciłowska A, Szymańska A, Ciosek P, Winnicka K. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016; 2016: 7697031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiman Brouki Milan or Alireza Rezapour.

Additional information

Compliance with ethics guidelines

Naser Amini, Peiman Brouki Milan, Vahid Hosseinpour Sarmadi, Bahareh Derakhshanmehr, Ahmad Hivechi, Fateme Khodaei, Masoud Hamidi, Sara Ashraf, Ghazaleh Larijani, and Alireza Rezapour declare that they have no conflict of interests. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, N., Milan, P.B., Sarmadi, V.H. et al. Microorganism-derived biological macromolecules for tissue engineering. Front. Med. 16, 358–377 (2022). https://doi.org/10.1007/s11684-021-0903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0903-0

Keywords

Navigation