Skip to main content
Log in

Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

The total number of cancer patients who are eligible for and will benefit from immune checkpoint inhibitors (ICIs) in China has not been quantified. This cross-sectional study was conducted to estimate the number of Chinese cancer patients with eligibility and response to ICIs based on the 2015 Chinese cancer statistics and the immune checkpoint inhibitor clinical practice guideline of the Chinese Society of Clinical Oncology. A total of 11 ICIs were recommended for 17 cancer types. The estimated number of eligible patients annually was 1 290 156 (55.18%), which included 888 738 males (60.05%) and 400 468 females (46.67%). The estimated number of responders annually was 448 972 (19.20%), which included 309 023 males (20.88%) and 139 764 females (16.29%). Gastric cancer (n=291 000, 12.45%), non-small-cell lung cancer (n=289 629, 12.39%), and hepatocellular carcinoma (n=277 100, 11.85%) were the top three cancer types with the highest number of eligible patients. Non-small-cell lung cancer (n=180 022, 7.70%), hepatocellular carcinoma (n=75 648, 3.24%), and small-cell lung cancer (n=64 362, 2.75%) were the top three cancer types with the highest number of responders. In conclusion, ICIs provide considerable benefit in Chinese cancer patients under optimal estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Food and Drug Administration. Hematology/Oncology (Cancer) Approvals & Safety Notifications. https://www.faa.ovv/drggs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications#main-content (accessed April 1, 2021)

  2. Peng L, Qin BD, Xiao K, Xu S, Yang JS, Zang YS, Stebbing J, Xie LP. A meta-analysis comparing responses of Asian versus non-Asian cancer patients to PD-1 and PD-L1 inhibitor-based therapy. OncoImmunology 2020; 9(1): 1781333

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zeng H, Chen W, Zheng R, Zhang S, Ji JS, Zou X, Xia C, Sun K, Yang Z, Li H, Wang N, Han R, Liu S, Li H, Mu H, He Y, Xu Y, Fu Z, Zhou Y, Jiang J, Yang Y, Chen J, Wei K, Fan D, Wang J, Fu F, Zhao D, Song G, Chen J, Jiang C, Zhou X, Gu X, Jin F, Li Q, Li Y, Wu T, Yan C, Dong J, Hua Z, Baade P, Bray F, Jemal A, Yu XQ, He J. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health 2018; 6(5): e555–e567

    Article  PubMed  Google Scholar 

  4. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond) 2019; 39(1): 22

    Article  Google Scholar 

  5. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 2007; 4(10): e297

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang S, Sun K, Zheng R, Zeng H, Wang S, Chen R, Wei W, He J. Cancer incidence and mortality in China, 2015. J Natl Cancer Cent 2021; 1(1): 2–11

    Article  CAS  Google Scholar 

  7. Chinese Society of Clinical Oncology. Guidelines of Chinese Society of Clinical Oncology (CSCO): Immune Checkpoint Inhibitor Clinical Practice. Beijing: People’s Medical Publishing House, 2020

    Google Scholar 

  8. Wang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, Tang L, Xin Y, Jin J, Zhang YJ, Yuan XL, Liu TS, Li GX, Wu Q, Xu HM, Ji JF, Li YF, Wang X, Yu S, Liu H, Guan WL, Xu RH. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond) 2019; 39(1): 10

    Article  Google Scholar 

  9. Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, Garrido-Laguna I, Grem JL, Gunn A, Hecht JR, Hoffe S, Hubbard J, Hunt S, Johung KL, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Gregory KM, Gurski LA. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19(3): 329–359

    Article  PubMed  Google Scholar 

  10. Overman MJ, Bergamo F, McDermott RS, Aglietta M, Chen F, Gelsomino F, Wong M, Morse M, Van Cutsem E, Hendlisz A, Neyns B, Moss RA, Zhao H, Cao ZA, Kamble S, Kopetz S, Andre T. Nivolumab in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): long-term survival according to prior line of treatment from CheckMate-142. J Clin Oncol 2018. 36(4 suppl): 554

    Article  Google Scholar 

  11. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357(6349): 409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2019; 2(5): e192535

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

    Article  PubMed  Google Scholar 

  14. Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD, Chen WQ, Shao ZM, Goss PE. Breast cancer in China. Lancet Oncol 2014; 15(7): e279–e289

    Article  PubMed  Google Scholar 

  15. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA; IMpassion130 Trial Investigators. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379(22): 2108–2121

    Article  CAS  PubMed  Google Scholar 

  16. Stovgaard ES, Dyhl-Polk A, Roslind A, Balslev E, Nielsen D. PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review. Breast Cancer Res Treat 2019; 174(3): 571–584

    Article  CAS  PubMed  Google Scholar 

  17. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363(20): 1938–1948

    Article  CAS  PubMed  Google Scholar 

  18. Jiang X, Tang H, Chen T. Epidemiology of gynecologic cancers in China. J Gynecol Oncol 2018; 29(1): e7

    Article  PubMed  Google Scholar 

  19. Verma V, Sprave T, Haque W, Simone CB 2nd, Chang JY, Welsh JW, Thomas CR Jr. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J Immunother Cancer 2018; 6(1): 128

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iivanainen S, Koivunen JP. Possibilities of improving the clinical value of immune checkpoint inhibitor therapies in cancer care by optimizing patient selection. Int J Mol Sci 2020; 21(2): 556

    Article  CAS  PubMed Central  Google Scholar 

  21. Bai R, Lv Z, Xu D, Cui J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2020; 8(1): 34

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nabet BY, Esfahani MS, Moding EJ, Hamilton EG, Chabon JJ, Rizvi H, Steen CB, Chaudhuri AA, Liu CL, Hui AB, Almanza D, Stehr H, Gojenola L, Bonilla RF, Jin MC, Jeon YJ, Tseng D, Liu C, Merghoub T, Neal JW, Wakelee HA, Padda SK, Ramchandran KJ, Das M, Plodkowski AJ, Yoo C, Chen EL, Ko RB, Newman AM, Hellmann MD, Alizadeh AA, Diehn M. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell 2020; 183(2): 363–376.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 2018; 24(10): 1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anagnostou V, Niknafs N, Marrone K, Bruhm DC, White JR, Naidoo J, Hummelink K, Monkhorst K, Lalezari F, Lanis M, Rosner S, Reuss JE, Smith KN, Adleff V, Rodgers K, Belcaid Z, Rhymee L, Levy B, Feliciano J, Hann CL, Ettinger DS, Georgiades C, Verde F, Illei P, Li QK, Baras AS, Gabrielson E, Brock MV, Karchin R, Pardoll DM, Baylin SB, Brahmer JR, Scharpf RB, Forde PM, Velculescu VE. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat Can 2020; 1(1): 99–111

    Article  CAS  Google Scholar 

  25. Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J 2021; 23(2): 39

    Article  PubMed  Google Scholar 

  26. Xie C, Duffy AG, Brar G, Fioravanti S, Mabry-Hrones D, Walker M, Bonilla CM, Wood BJ, Citrin DE, Gil Ramirez EM, Escorcia FE, Redd B, Hernandez JM, Davis JL, Gasmi B, Kleiner D, Steinberg SM, Jones JC, Greten TF. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin Cancer Res 2020; 26(10): 2318–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ueno M, Ikeda M, Morizane C, Kobayashi S, Ohno I, Kondo S, Okano N, Kimura K, Asada S, Namba Y, Okusaka T, Furuse J. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol 2019; 4(8): 611–621

    Article  PubMed  Google Scholar 

  28. Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, Fassò M, Osborne S, Molinero L, O’Hear C, Grossman W, Baehring J. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol 2018; 140(2): 317–328

    Article  CAS  PubMed  Google Scholar 

  29. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, Phuphanich S, Sepulveda JM, De Souza P, Sahebjam S, Carleton M, Tatsuoka K, Taitt C, Zwirtes R, Sampson J, Weller M. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020; 6(7): 1003–1010

    Article  PubMed  Google Scholar 

  30. da Veiga CRP, da Veiga CP, Drummond-Lage AP. Concern over cost of and access to cancer treatments: a meta-narrative review of nivolumab and pembrolizumab studies. Crit Rev Oncol Hematol 2018; 129: 133–145

    Article  PubMed  Google Scholar 

  31. de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020; 38(3): 326–333

    Article  CAS  PubMed  Google Scholar 

  32. Mushti SL, Mulkey F, Sridhara R. Evaluation of overall response rate and progression-free survival as potential surrogate endpoints for overall survival in immunotherapy trials. Clin Cancer Res 2018; 24(10): 2268–2275

    Article  CAS  PubMed  Google Scholar 

  33. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, de la Fouchardiere C, Rivera F, Elez E, Bendell J, Le DT, Yoshino T, Van Cutsem E, Yang P, Farooqui MZH, Marinello P, Diaz LA Jr; KEYNOTE-177 Investigators. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 2020; 383(23): 2207–2218

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61435001) and CAMS Innovation Fund for Medical Sciences (Nos. 2017-I2M-4-003 and 2016-I2M-1-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Bai.

Ethics declarations

Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, and Chunmei Bai declare no competing interests. This study was exempt from formal institutional board review because of its retrospective design and deidentified data.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Li, J., Zhao, L. et al. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors. Front. Med. 16, 773–783 (2022). https://doi.org/10.1007/s11684-021-0902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0902-1

Keywords

Navigation