Skip to main content
Log in

Four-protein model for predicting prognostic risk of lung cancer

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Patients with lung cancer at the same stage may have markedly different overall outcome and a lack of specific biomarker to predict lung cancer outcome. Heat-shock protein 90 β (HSP90β) is overexpressed in various tumor cells. In this study, the ELISA results of HSP90β combined with CEA, CA125, and CYFRA21-1 were used to construct a recursive partitioning decision tree model to establish a four-protein diagnostic model and predict the survival of patients with lung cancer. Survival analysis showed that the recursive partitioning decision tree could distinguish the prognosis between high- and low-risk groups. Results suggested that the joint detection of HSP90β, CEA, CA125, and CYFRA21-1 in the peripheral blood of patients with lung cancer is plausible for early diagnosis and prognosis prediction of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5–29

    Article  PubMed  Google Scholar 

  2. Park CK, Lee SH, Han JH, Kim CY, Kim DW, Paek SH, Kim DG, Heo DS, Kim IH, Jung HW. Recursive partitioning analysis of prognostic factors in WHO grade III glioma patients treated with radiotherapy or radiotherapy plus chemotherapy. BMC Cancer 2009; 9(1): 450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro-oncol 2004; 6(3): 227–235

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Lin D, Xiao T, Ma Y, Hu Z, Zheng H, Zheng S, Liu Y, Li M, Li L, Cao Y, Guo S, Han N, Di X, Zhang K, Cheng S, Gao Y. An immunohistochemical analysis-based decision tree model for estimating the risk of lymphatic metastasis in pN0 squamous cell carcinomas of the lung. Histopathology 2011; 59(5): 882–891

    Article  PubMed  Google Scholar 

  5. Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010; 11(7): 515–528

    Article  CAS  PubMed  Google Scholar 

  6. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for cancer therapy. Br J Cancer 2009; 100(10): 1523–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010; 10(8): 537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228(2): 111–133

    Article  CAS  Google Scholar 

  9. Beere HM. Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001; 2001(93): re1

    Article  CAS  PubMed  Google Scholar 

  10. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91(18): 8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 2004; 10(6): 283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002; 2(1): 3–24

    Article  CAS  PubMed  Google Scholar 

  13. Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003; 3(3): 213–217

    Article  CAS  PubMed  Google Scholar 

  14. Gress TM, Müller-Pillasch F, Weber C, Lerch MM, Friess H, Büchler M, Beger HG, Adler G. Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 1994; 54(2): 547–551

    CAS  PubMed  Google Scholar 

  15. Mileo AM, Fanuele M, Battaglia F, Scambia G, Benedetti-Panici P, Mancuso S, Ferrini U. Selective over-expression of mRNA coding for 90 kDa stress-protein in human ovarian cancer. Anticancer Res 1990; 10(4): 903–906

    CAS  PubMed  Google Scholar 

  16. Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, Trager JB, Morin GB, Toft DO, Shay JW, Wright WE, White MA. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999; 13(7): 817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akalin A, Elmore LW, Forsythe HL, Amaker BA, McCollum ED, Nelson PS, Ware JL, Holt SE. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res 2001; 61(12): 4791–4796

    CAS  PubMed  Google Scholar 

  18. Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79(2): 129–168

    Article  CAS  PubMed  Google Scholar 

  19. Sreedhar AS, Kalmár E, Csermely P, Shen YF. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 2004; 562(1–3): 11–15

    Article  PubMed  CAS  Google Scholar 

  20. Ogata M, Naito Z, Tanaka S, Moriyama Y, Asano G. Over-expression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch 2000; 67(3): 177–185

    Article  CAS  PubMed  Google Scholar 

  21. Cambiazo V, González M, Isamit C, Maccioni RB. The β-isoform of heat shock protein hsp-90 is structurally related with human microtubule-interacting protein Mip-90. FEBS Lett 1999; 457(3): 343–347

    Article  CAS  PubMed  Google Scholar 

  22. Sreedhar AS, Mihály K, Pató B, Schnaider T, Steták A, Kis-Petik K, Fidy J, Simonics T, Maraz A, Csermely P. Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. J Biol Chem 2003; 278(37): 35231–35240

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Ye L, Wang J, Fan D. Expression of heat shock protein 90 β in human gastric cancer tissue and SGC7901/VCR of MDR-type gastric cancer cell line. Chin Med J (Engl) 1999; 112(12): 1133–1137

    CAS  Google Scholar 

  24. Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101(3): 227–257

    Article  CAS  PubMed  Google Scholar 

  25. Bertram J, Palfner K, Hiddemann W, Kneba M. Increase of P-glycoprotein-mediated drug resistance by hsp 90 β. Anticancer Drugs 1996; 7(8): 838–845

    Article  CAS  PubMed  Google Scholar 

  26. Molina R, Filella X, Augé JM, Fuentes R, Bover I, Rifa J, Moreno V, Canals E, Viñolas N, Marquez A, Barreiro E, Borras J, Viladiu P. Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol 2003; 24(4): 209–218

    Article  CAS  PubMed  Google Scholar 

  27. Karam AK, Karlan BY. Ovarian cancer: the duplicity of CA125 measurement. Nat Rev Clin Oncol 2010; 7(6): 335–339

    Article  CAS  PubMed  Google Scholar 

  28. Cedrés S, Nuñez I, Longo M, Martinez P, Checa E, Torrejón D, Felip E. Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer (NSCLC). Clin Lung Cancer 2011; 12(3): 172–179

    Article  PubMed  CAS  Google Scholar 

  29. Xu J-Y, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, Wang M, Feng L, Zhao L, Liu P, Wang B, Zhao X, Xie H, Yang X, Zhao L, Chang Y, Jia J, Wang X, Zhang Y, Wang Y, Yang Y, Wu Z, Yang L, Liu B, Zhao T, Ren S, Sun A, Zhao Y, Ying W, Wang F, Wang G, Zhang Y, Cheng S, Qin J, Qian X, Wang Y, Li J, He F, Xiao T, Tan M. Integrative proteomic characterization of human lung adenocarcinoma. Cell 2020; 182(1): 245–261.e17

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Wang Y, Feng L, Wang M, Zhang K, Mao Y, Xiao T, Cheng S. Elevated expression of lung development-related protein HSP90β indicates poor prognosis in non-small cell lung cancer through affecting the cell cycle and apoptosis. Signal Transduct Target Ther 2021; 6(1): 82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Therneau TM, Atkinson EJ. An introduction to recursive partitioning using the RPART routines. Mayo Foundation: Technical report 1997; 61: 452

    Google Scholar 

  32. Millson SH, Truman AW, Rácz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Söti C, Piper PW. Expressed as the sole Hsp90 of yeast, the a and β isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90β generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 2007; 274(17): 4453–4463

    Article  CAS  PubMed  Google Scholar 

  33. Gallegos Ruiz MI, Floor K, Roepman P, Rodriguez JA, Meijer GA, Mooi WJ, Jassem E, Niklinski J, Muley T, van Zandwijk N, Smit EF, Beebe K, Neckers L, Ylstra B, Giaccone G. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One 2008; 3(3): e0001722

    Article  PubMed  CAS  Google Scholar 

  34. Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL, Lyerly HK. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res 2012; 14(2): R62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang G, Gu X, Chen L, Wang Y, Cao B, E Q. Comparison of the expression of 5 heat shock proteins in benign and malignant salivary gland tumor tissues. Oncol Lett 2013; 5(4): 1363–1369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, Ilag LL, Jay DG. Functional proteomic screens reveal an essential extracellular role for hsp90a in cancer cell invasiveness. Nat Cell Biol 2004; 6(6): 507–514

    Article  CAS  PubMed  Google Scholar 

  37. Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 2004; 279(44): 45379–45388

    Article  CAS  PubMed  Google Scholar 

  38. Tsutsumi S, Scroggins B, Koga F, Lee MJ, Trepel J, Felts S, Carreras C, Neckers L. A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 2008; 27(17): 2478–2487

    Article  CAS  PubMed  Google Scholar 

  39. Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 2012; 76(2): 138–143

    Article  CAS  PubMed  Google Scholar 

  40. Ando S, Kimura H, Iwai N, Yamamoto N, Iida T. Positive reactions for both Cyfra21-1 and CA125 indicate worst prognosis in non-small cell lung cancer. Anticancer Res 2003; 23(3C): 2869–2874

    CAS  PubMed  Google Scholar 

  41. Hui L, Liping G. Statistical estimation of diagnosis with genetic markers based on decision tree analysis of complex disease. Comput Biol Med 2009; 39(11): 989–992

    Article  CAS  PubMed  Google Scholar 

  42. Al-Dlaeen D, Alashqur A. Using decision tree classification to assist in the prediction of Alzheimer’s disease. International Conference on Computer Science and Information Technology 2014: 122–126

  43. Mai S, Turner T, Stocker R. Using decision tree for diagnosing heart disease patients. Australasian Data Mining Conference 2011: 23–30

Download references

Acknowledgements

This work was granted by CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2016-I2M-1-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Dong, Ting Xiao or Shujun Cheng.

Additional information

Compliance with ethics guidelines

Xiang Wang, Minghui Wang, Lin Feng, Jie Song, Xin Dong, Ting Xiao, and Shujun Cheng declare that they have no conflicts of interest. This manuscript does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, M., Feng, L. et al. Four-protein model for predicting prognostic risk of lung cancer. Front. Med. 16, 618–626 (2022). https://doi.org/10.1007/s11684-021-0867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0867-0

Keywords

Navigation