Skip to main content
Log in

Telomeric impact of conventional chemotherapy

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

The increased level of chromosome instability in cancer cells, leading to aneuploidy and gross chromosomal rearrangements, is not only a driving force for oncogenesis but also can be the Achille’s heel of the disease since many chemotherapies (CT) kill cells by inducing a non-tolerable rate of DNA damage. A wealth of published evidence showed that telomere stability can be more affected than the bulk of the genome by several conventional antineoplasic drugs. These results raise the interesting possibility that CT with genotoxic drugs preferentially target telomeres. In agreement with this view, accelerated shortening of telomere length has been described in blood lineage cells following high-dose CT (stem cell transplantation) or non-myeloablative CT. However, almost nothing is known on the consequences of this shortening in terms of telomere stability, senescence and on the development of second cancers or post-treatment aging-like syndromes in cancer survivors (cognitive defect, fertility impairment, etc.). In this article, we propose: (1) telomeres of cancer cells are preferential genomic targets of chemotherapies altering chromosome maintenance; (2) telomere functional parameters can be a surrogate marker of chemotherapy sensitivity and toxicity; (3) the use of anti-telomere molecule could greatly enhance the sensitivity to standards chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445(7128): 656–660

    Article  PubMed  CAS  Google Scholar 

  2. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436(7054): 1186–1190

    Article  PubMed  CAS  Google Scholar 

  3. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8(3): 151–160

    Article  PubMed  CAS  Google Scholar 

  4. Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M, Staszewsky L, Frapolli R, Stevens MF, Stoppacciaro A, Mottolese M, Antoniani B, Gilson E, Zupi G, Biroccio A. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res 2008; 14(22): 7284–7291

    Article  PubMed  CAS  Google Scholar 

  5. Biroccio A, Porru M, Rizzo A, Salvati E, D’Angelo C, Orlandi A, Passeri D, Franceschin M, Stevens MF, Gilson E, Beretta G, Zupi G, Pisano C, Zunino F, Leonetti C. DNA damage persistence as determinant of tumor sensitivity to the combination of Topo I inhibitors and telomere-targeting agents. Clin Cancer Res 2011; 17(8): 2227–2236

    Article  PubMed  CAS  Google Scholar 

  6. Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S, Calsou P, Salles B, Bizard A, Nadal M, Salvati E, Sabatier L, Wu Y, Biroccio A, Londoño-Vallejo A, Giraud-Panis MJ, Gilson E. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010; 142(2): 230–242

    Article  PubMed  CAS  Google Scholar 

  7. Ourliac-Garnier I, Poulet A, Charif R, Amiard S, Magdinier F, Rezaï K, Gilson E, Giraud-Panis MJ, Bombard S. Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1. J Biol Inorg Chem 2010; 15(5): 641–654

    Article  PubMed  CAS  Google Scholar 

  8. Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L, Weiler SR, DePinho RA. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA 2001; 98(6): 3381–3386

    Article  PubMed  CAS  Google Scholar 

  9. Snyder AR, Zhou J, Deng Z, Lieberman PM. Therapeutic doses of hydroxyurea cause telomere dysfunction and reduce TRF2 binding to telomeres. Cancer Biol Ther 2009; 8(12): 1136–1145

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi MT, Cesare AJ, Fitzpatrick JA, Lazzerini-Denchi E, Karlseder J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 2012; 19(4): 387–394

    Article  PubMed  CAS  Google Scholar 

  11. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100–2110

    Article  PubMed  Google Scholar 

  12. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol 2008; 9(9): 232

    Article  PubMed  Google Scholar 

  13. Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet 2007; 8(4): 299–309

    Article  PubMed  CAS  Google Scholar 

  14. Baur JA, Zou Y, Shay JW, Wright WE. Telomere position effect in human cells. Science 2001; 292(5524): 2075–2077

    Article  PubMed  CAS  Google Scholar 

  15. Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pulitzer JF, Gilson E. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 2002; 3(11): 1055–1061

    Article  PubMed  CAS  Google Scholar 

  16. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851): 798–801

    Article  PubMed  CAS  Google Scholar 

  17. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008; 10(2): 228–236

    Article  PubMed  CAS  Google Scholar 

  18. Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R, Giulotto E, Azzalin CM. CpG-island promoters drive transcription of human telomeres. RNA 2009; 15(12): 2186–2194

    Article  PubMed  CAS  Google Scholar 

  19. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop (see comments). Cell 1999; 97(4): 503–514

    Article  PubMed  CAS  Google Scholar 

  20. Amiard S, Doudeau M, Pinte S, Poulet A, Lenain C, Faivre-Moskalenko C, Angelov D, Hug N, Vindigni A, Bouvet P, Paoletti J, Gilson E, Giraud-Panis MJ. A topological mechanism for TRF2-enhanced strand invasion. Nat Struct Mol Biol 2007; 14(2): 147–154

    Article  PubMed  CAS  Google Scholar 

  21. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009; 460(7251): 66–72

    Article  PubMed  CAS  Google Scholar 

  22. Martinez P, Thanasoula M, Carlos AR, Gómez-López G, Tejera AM, Schoeftner S, Dominguez O, Pisano DG, Tarsounas M, Blasco MA. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 2010; 12(8): 768–780

    Article  PubMed  CAS  Google Scholar 

  23. Simonet T, Zaragosi LE, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, Magdinier F, Horard B, Barbry P, Waldmann R, Gilson E. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res 2011; 21(7): 1028–1038

    Article  PubMed  CAS  Google Scholar 

  24. Yang D, Xiong Y, Kim H, He Q, Li Y, Chen R, Songyang Z. Human telomeric proteins occupy selective interstitial sites. Cell Res 2011; 21(7): 1013–1027

    Article  PubMed  Google Scholar 

  25. Brunori M, Luciano P, Gilson E, Géli V. The telomerase cycle: normal and pathological aspects. J Mol Med (Berl) 2005; 83(4): 244–257

    Article  CAS  Google Scholar 

  26. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28(2): 155–159

    Article  PubMed  CAS  Google Scholar 

  27. Klapper W, Krams M, Qian W, Janssen D, Parwaresch R. Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomere-binding protein expression but uncoupled from proliferation. Br J Cancer 2003; 89(4): 713–719

    Article  PubMed  CAS  Google Scholar 

  28. Nakanishi K, Kawai T, Kumaki F, Hiroi S, Mukai M, Ikeda E, Koering CE, Gilson E. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003; 9(3): 1105–1111

    PubMed  CAS  Google Scholar 

  29. Bellon M, Datta A, Brown M, Pouliquen JF, Couppie P, Kazanji M, Nicot C. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int J Cancer 2006; 119(9): 2090–2097

    Article  PubMed  CAS  Google Scholar 

  30. Biroccio A, Rizzo A, Elli R, Koering CE, Belleville A, Benassi B, Leonetti C, Stevens MF, D’Incalci M, Zupi G, Gilson E. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer 2006; 42(12): 1881–1888

    Article  PubMed  CAS  Google Scholar 

  31. Blanco R, Muñoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007; 21(2): 206–220

    Article  PubMed  CAS  Google Scholar 

  32. Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L, Mendez-Bermudez A, Poncet D, Grataroli R, de Rodenbeeke CT, Salvati E, Rizzo A, Zizza P, Ricoul M, Cognet C, Kuilman T, Duret H, Lépinasse F, Marvel J, Verhoeyen E, Cosset FL, Peeper D, Smyth MJ, Londoño-Vallejo A, Sabatier L, Picco V, Pages G, Scoazec JY, Stoppacciaro A, Leonetti C, Vivier E, Gilson E. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 2013; 15(7): 818–828

    Article  PubMed  CAS  Google Scholar 

  33. Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R, Sperduti I, Stevens MF, D’Incalci M, Blasco M, Chiorino G, Bauwens S, Horard B, Gilson E, Stoppacciaro A, Zupi G, Biroccio A. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007; 117(11): 3236–3247

    Article  PubMed  CAS  Google Scholar 

  34. Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007; 8(10): 825–838

    Article  PubMed  CAS  Google Scholar 

  35. Bao K, Cohen SN. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc Natl Acad Sci USA 2004; 101(40): 14361–14366

    Article  PubMed  CAS  Google Scholar 

  36. Bankhead T, Kobryn K, Chaconas G. Unexpected twist: harnessing the energy in positive supercoils to control telomere resolution. Mol Microbiol 2006; 62(3): 895–905

    Article  PubMed  CAS  Google Scholar 

  37. Germe T, Miller K, Cooper JP. A non-canonical function of topoisomerase II in disentangling dysfunctional telomeres. EMBO J 2009; 28(18): 2803–2811

    Article  PubMed  CAS  Google Scholar 

  38. Klapper W, Qian W, Schulte C, Parwaresch R. DNA damage transiently increases TRF2 mRNA expression and telomerase activity. Leukemia 2003; 17(10): 2007–2015

    Article  PubMed  CAS  Google Scholar 

  39. Zhang YW, Zhang ZX, Miao ZH, Ding J. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine. Mol Pharmacol 2008; 73(3): 824–832

    Article  PubMed  CAS  Google Scholar 

  40. Su CH, Chu WC, Lan KH, Li CP, Chao Y, Lin HC, Lee SD, Tsai YC, Lee WP. Gemcitabine causes telomere attrition by stabilizing TRF2. Eur J Cancer 2012; 48(18): 3465–3474

    Article  PubMed  CAS  Google Scholar 

  41. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012; 14(4): 355–365

    Article  PubMed  CAS  Google Scholar 

  42. Schröder CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH, de Leij LF, van der Zee AG, de Vries EG. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer 2001; 84(10): 1348–1353

    Article  PubMed  Google Scholar 

  43. Rufer N, Brümmendorf TH, Chapuis B, Helg C, Lansdorp PM, Roosnek E. Accelerated telomere shortening in hematological lineages is limited to the first year following stem cell transplantation. Blood 2001; 97(2): 575–577

    Article  PubMed  CAS  Google Scholar 

  44. Rocci A, Ricca I, Dellacasa C, Longoni P, Compagno M, Francese R, Lobetti Bodoni C, Manzini P, Caracciolo D, Boccadoro M, Ferrero D, Ladetto M, Carlo-Stella C, Tarella C. Long-term lymphoma survivors following high-dose chemotherapy and autograft: evidence of permanent telomere shortening in myeloid cells, associated with marked reduction of bone marrow hematopoietic stem cell reservoir. Exp Hematol 2007; 35(4): 673–681

    Article  PubMed  CAS  Google Scholar 

  45. Yoon SY, Sung HJ, Park KH, Choi IK, Kim SJ, Oh SC, Seo JH, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS. Telomere length shortening of peripheral blood mononuclear cells in solid-cancer patients undergoing standard-dose chemotherapy might be correlated with good treatment response and neutropenia severity. Acta Haematol 2007; 118(1): 30–37

    Article  PubMed  CAS  Google Scholar 

  46. Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C. The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 2011; 39(12): 1171–1181

    Article  PubMed  CAS  Google Scholar 

  47. González-Suárez E, Samper E, Flores JM, Blasco MA. Telomerasedeficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26(1): 114–117

    Article  PubMed  Google Scholar 

  48. Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 2007; 11(5): 461–469

    Article  PubMed  CAS  Google Scholar 

  49. Mauch PM, Kalish LA, Marcus KC, Coleman CN, Shulman LN, Krill E, Come S, Silver B, Canellos GP, Tarbell NJ. Second malignancies after treatment for laparotomy staged IA-IIIB Hodgkin’s disease: long-term analysis of risk factors and outcome. Blood 1996; 87(9): 3625–3632

    PubMed  CAS  Google Scholar 

  50. M’kacher R, Bennaceur-Griscelli A, Girinsky T, Koscielny S, Delhommeau F, Dossou J, Violot D, Leclercq E, Courtier MH, Béron-Gaillard N, Assaf E, Ribrag V, Bourhis J, Feneux D, Bernheim A, Parmentier C, Carde P. Telomere shortening and associated chromosomal instability in peripheral blood lymphocytes of patients with Hodgkin’s lymphoma prior to any treatment are predictive of second cancers. Int J Radiat Oncol Biol Phys 2007; 68(2): 465–471

    Article  PubMed  Google Scholar 

  51. Smith RE. Risk for the development of treatment-related acute myelocytic leukemia and myelodysplastic syndrome among patients with breast cancer: review of the literature and the National Surgical Adjuvant Breast and Bowel Project experience. Clin Breast Cancer 2003; 4(4): 273–279

    Article  PubMed  CAS  Google Scholar 

  52. Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY) 2011; 3(8): 782–793

    Google Scholar 

  53. Deprez S, Amant F, Smeets A, Peeters R, Leemans A, Van Hecke W, Verhoeven JS, Christiaens MR, Vandenberghe J, Vandenbulcke M, Sunaert S. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol 2012; 30(3): 274–281

    Article  PubMed  Google Scholar 

  54. Quesnel C, Savard J, Ivers H. Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Res Treat 2009; 116(1): 113–123

    Article  PubMed  Google Scholar 

  55. Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM, Mattson MP. Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 2008; 18(19): 1489–1494

    Article  PubMed  Google Scholar 

  56. Poncet D, Belleville A, t’kint de Roodenbeke C, Roborel de Climens A, Ben Simon E, Merle-Beral H, Callet-Bauchu E, Salles G, Sabatier L, Delic J, Gilson E. Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 2008; 111(4): 2388–2391

    Article  PubMed  CAS  Google Scholar 

  57. Augereau A, T’kint de Roodenbeke C, Simonet T, Bauwens S, Horard B, Callanan M, Leroux D, Jallades L, Salles G, Gilson E, Poncet D. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118(5): 1316–1322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Leong, W., Guérin, O. et al. Telomeric impact of conventional chemotherapy. Front. Med. 7, 411–417 (2013). https://doi.org/10.1007/s11684-013-0293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-013-0293-z

Keywords

Navigation