Skip to main content

Advertisement

Log in

Neuroanatomical associations of the Edinburgh cognitive and Behavioural ALS screen (ECAS)

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Cognitive impairment is now recognized in a subset of patients with amyotrophic lateral sclerosis (ALS). The objective of the study was to identify group differences and neuroanatomical correlates of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) in participants ALS. Fifty-three ALS patients and 43 healthy controls recruited as a part of our multicentre study (CALSNIC) were administered the ECAS and underwent an MRI scan. Voxel-based morphometry and tract based spatial statistics (TBSS) was performed to identify structural changes and associations with impaired ECAS scores. Lower performance in the ECAS verbal fluency and executive domains were noted in ALS patients as compared to controls (p < 0.01). Extensive white matter degeneration was noted in the corticospinal tract in all ALS patients, while ALS patients with impaired verbal fluency or executive domains (ALS-exi, n = 22), displayed additional degeneration in the corpus callosum, cingulum and superior longitudinal fasciculus as compared to controls (p < 0.05, TFCE corrected). Mild grey matter changes and associations with ECAS verbal fluency or executive performance were noted at lenient statistical thresholds (p < 0.001, uncorrected). Executive impairment was detected using the ECAS in our multicentre sample of Canadian ALS patients. White matter degeneration in motor regions was revealed in ALS patients with extensive spread to frontal regions in the ALS-exi sub-group. Mild associations between ECAS verbal fluency, executive function scores and MRI metrics suggest that reduced performance may be associated with widespread structural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulla, S., Machts, J., Kaufmann, J., Patrick, K., Kollewe, K., Dengler, R., Heinze, H. J., Petri, S., Vielhaber, S., & Nestor, P. J. (2014). Hippocampal degeneration in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 35(11), 2639–2645. https://doi.org/10.1016/j.neurobiolaging.2014.05.035.

    Article  PubMed  Google Scholar 

  • Abe, K., Fujimura, H., Toyooka, K., Sakoda, S., Yorifuji, S., & Yanagihara, T. (1997). Cognitive function in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 148(1), 95–100.

    Article  Google Scholar 

  • Abrahams, S., Goldstein, L. H., Al-Chalabi, A., Pickering, A., Morris, R. G., Passingham, R. E., et al. (1997). Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. Journal of Neurol Neurosurg Psychiatry, 62(5), 464–472.

    Article  Google Scholar 

  • Abrahams, S., Leigh, P. N., Harvey, A., Vythelingum, G. N., Grise, D., & Goldstein, L. H. (2000). Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia, 38(6), 734–747.

    Article  Google Scholar 

  • Abrahams, S., Newton, J., Niven, E., Foley, J., & Bak, T. H. (2014). Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener, 15(1–2), 9–14. https://doi.org/10.3109/21678421.2013.805784.

    Article  PubMed  Google Scholar 

  • Agosta, F., Rocca, M. A., Valsasina, P., Sala, S., Caputo, D., Perini, M., Salvi, F., Prelle, A., & Filippi, M. (2009). A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. Journal of Neurology, Neurosurgery, and Psychiatry, 80(1), 53–55. https://doi.org/10.1136/jnnp.2008.154252.

    Article  PubMed  Google Scholar 

  • Agosta, F., Pagani, E., Petrolini, M., Caputo, D., Perini, M., Prelle, A., Salvi, F., & Filippi, M. (2010). Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: A diffusion tensor MR imaging tractography study. AJNR. American Journal of Neuroradiology, 31(8), 1457–1461. https://doi.org/10.3174/ajnr.A2105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Agosta, F., Ferraro, P. M., Riva, N., Spinelli, E. G., Chio, A., Canu, E., et al. (2016). Structural brain correlates of cognitive and behavioral impairment in MND. Human Brain Mapping, 37(4), 1614–1626. https://doi.org/10.1002/hbm.23124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bach, M., Laun, F. B., Leemans, A., Tax, C. M., Biessels, G. J., Stieltjes, B., et al. (2014). Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage, 100, 358–369. https://doi.org/10.1016/j.neuroimage.2014.06.021.

    Article  PubMed  Google Scholar 

  • Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in Biomedicine, 15(7–8), 435–455. https://doi.org/10.1002/nbm.782.

    Article  PubMed  Google Scholar 

  • Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck depression inventory-II. San Antonio: Psychological Corporation.

    Google Scholar 

  • Bede, P., Bokde, A., Elamin, M., Byrne, S., McLaughlin, R. L., Jordan, N., Hampel, H., Gallagher, L., Lynch, C., Fagan, A. J., Pender, N., & Hardiman, O. (2013). Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): A neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery, and Psychiatry, 84(7), 766–773. https://doi.org/10.1136/jnnp-2012-302674.

    Article  PubMed  Google Scholar 

  • Birn, R. M., Kenworthy, L., Case, L., Caravella, R., Jones, T. B., Bandettini, P. A., & Martin, A. (2010). Neural systems supporting lexical search guided by letter and semantic category cues: A self-paced overt response fMRI study of verbal fluency. Neuroimage, 49(1), 1099–1107. https://doi.org/10.1016/j.neuroimage.2009.07.036.

    Article  PubMed  Google Scholar 

  • Braak, H., Brettschneider, J., Ludolph, A. C., Lee, V. M., Trojanowski, J. Q., & Del Tredici, K. (2013). Amyotrophic lateral sclerosis--a model of corticofugal axonal spread. Nature Reviews. Neurology, 9(12), 708–714. https://doi.org/10.1038/nrneurol.2013.221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brettschneider, J., Del Tredici, K., Toledo, J. B., Robinson, J. L., Irwin, D. J., Grossman, M., et al. (2013). Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 74(1), 20–38. https://doi.org/10.1002/ana.23937.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293–299.

    Article  Google Scholar 

  • Burke, T., Lonergan, K., Pinto-Grau, M., Elamin, M., Bede, P., Madden, C., Hardiman, O., & Pender, N. (2017). Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: Executive function as a mediator, and predictor of performance. Amyotroph Lateral Scler Frontotemporal Degener, 18(3–4), 193–201. https://doi.org/10.1080/21678421.2016.1272615.

    Article  PubMed  Google Scholar 

  • Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., & Nakanishi, A. (1999). The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS study group (phase III). Journal of the Neurological Sciences, 169(1–2), 13–21.

    Article  Google Scholar 

  • Chang, J. L., Lomen-Hoerth, C., Murphy, J., Henry, R. G., Kramer, J. H., Miller, B. L., & Gorno-Tempini, M. L. (2005). A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology, 65(1), 75–80. https://doi.org/10.1212/01.wnl.0000167602.38643.29.

    Article  PubMed  Google Scholar 

  • Christidi, F., Karavasilis, E., Riederer, F., Zalonis, I., Ferentinos, P., Velonakis, G., Xirou, S., Rentzos, M., Argiropoulos, G., Zouvelou, V., Zambelis, T., Athanasakos, A., Toulas, P., Vadikolias, K., Efstathopoulos, E., Kollias, S., Karandreas, N., Kelekis, N., & Evdokimidis, I. (2018). Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging and Behavior, 12(2), 547–563. https://doi.org/10.1007/s11682-017-9722-y.

    Article  PubMed  Google Scholar 

  • Dimond, D., Ishaque, A., Chenji, S., Mah, D., Chen, Z., Seres, P., Beaulieu, C., & Kalra, S. (2017). White matter structural network abnormalities underlie executive dysfunction in amyotrophic lateral sclerosis. Human Brain Mapping, 38(3), 1249–1268. https://doi.org/10.1002/hbm.23452.

    Article  PubMed  Google Scholar 

  • Goldstein, L. H., & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: Nature of impairment and implications for assessment. Lancet Neurology, 12(4), 368–380. https://doi.org/10.1016/S1474-4422(13)70026-7.

    Article  PubMed  Google Scholar 

  • Kasper, E., Schuster, C., Machts, J., Kaufmann, J., Bittner, D., Vielhaber, S., Benecke, R., Teipel, S., & Prudlo, J. (2014). Microstructural white matter changes underlying cognitive and behavioural impairment in ALS--an in vivo study using DTI. PLoS One, 9(12), e114543. https://doi.org/10.1371/journal.pone.0114543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufmann, P., Pullman, S. L., Shungu, D. C., Chan, S., Hays, A. P., Del Bene, M. L., et al. (2004). Objective tests for upper motor neuron involvement in amyotrophic lateral sclerosis (ALS). Neurology, 62(10), 1753–1757.

    Article  Google Scholar 

  • Keller, J., Bohm, S., Aho-Ozhan, H. E. A., Loose, M., Gorges, M., Kassubek, J., et al. (2017). Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis. Brain Imaging and Behavior, 12, 771–784. https://doi.org/10.1007/s11682-017-9738-3.

    Article  Google Scholar 

  • Kew, J. J., Goldstein, L. H., Leigh, P. N., Abrahams, S., Cosgrave, N., Passingham, R. E., et al. (1993). The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain, 116(Pt 6), 1399–1423.

    Article  Google Scholar 

  • Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., Burrell, J. R., & Zoing, M. C. (2011). Amyotrophic lateral sclerosis. Lancet, 377(9769), 942–955. https://doi.org/10.1016/S0140-6736(10)61156-7.

    Article  PubMed  Google Scholar 

  • Kimura, F., Fujimura, C., Ishida, S., Nakajima, H., Furutama, D., Uehara, H., Shinoda, K., Sugino, M., & Hanafusa, T. (2006). Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology, 66(2), 265–267. https://doi.org/10.1212/01.wnl.0000194316.91908.8a.

    Article  PubMed  Google Scholar 

  • Leemans, A, Jeurissen, B, Sijbers, J, and Jones, DK (2009). ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Paper presented at the 17th annual meeting of Intl Soc mag Reson med, Hawaii, USA,

  • Loose, M, Burkhardt, C, Aho-Ozhan, H, Keller, J, Abdulla, S, Bohm, S, et al. (2016). Age and education-matched cut-off scores for the revised German/Swiss-German version of ECAS. Amyotroph Lateral Scler Frontotemporal Degener, 1-3, doi:https://doi.org/10.3109/21678421.2016.1162814.

  • Lulé, D., Burkhardt, C., Abdulla, S., Bohm, S., Kollewe, K., Uttner, I., et al. (2015). The Edinburgh cognitive and Behavioural amyotrophic lateral sclerosis screen: A cross-sectional comparison of established screening tools in a German-Swiss population. Amyotroph Lateral Scler Frontotemporal Degener, 16(1–2), 16–23. https://doi.org/10.3109/21678421.2014.959451.

    Article  PubMed  Google Scholar 

  • Lulé, D., Bohm, S., Muller, H. P., Aho-Ozhan, H., Keller, J., Gorges, M., et al. (2018). Cognitive phenotypes of sequential staging in amyotrophic lateral sclerosis. Cortex, 101, 163–171. https://doi.org/10.1016/j.cortex.2018.01.004.

    Article  PubMed  Google Scholar 

  • Machts, J., Bittner, V., Kasper, E., Schuster, C., Prudlo, J., Abdulla, S., Kollewe, K., Petri, S., Dengler, R., Heinze, H. J., Vielhaber, S., Schoenfeld, M. A., & Bittner, D. M. (2014). Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: A comparative neuropsychological study of amnestic mild cognitive impairment. BMC Neuroscience, 15, 83.

    Article  Google Scholar 

  • Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233–1239.

    Article  Google Scholar 

  • Menke, R. A., Korner, S., Filippini, N., Douaud, G., Knight, S., Talbot, K., et al. (2014). Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain, 137(Pt 9), 2546–2555.

    Article  Google Scholar 

  • Menke, R. A., Proudfoot, M., Wuu, J., Andersen, P. M., Talbot, K., Benatar, M., et al. (2016). Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. Journal of Neurology, Neurosurgery, and Psychiatry, 87(6), 580–588. https://doi.org/10.1136/jnnp-2015-311945.

    Article  PubMed  Google Scholar 

  • Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., & Hodges, J. R. (2006). The Addenbrooke's cognitive examination revised (ACE-R): A brief cognitive test battery for dementia screening. International Journal of Geriatric Psychiatry, 21(11), 1078–1085. https://doi.org/10.1002/gps.1610.

    Article  PubMed  Google Scholar 

  • Mioshi, E., Lillo, P., Yew, B., Hsieh, S., Savage, S., Hodges, J. R., Kiernan, M. C., & Hornberger, M. (2013). Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 80(12), 1117–1123.

    Article  Google Scholar 

  • Mitsumoto, H., Ulug, A. M., Pullman, S. L., Gooch, C. L., Chan, S., Tang, M. X., et al. (2007). Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology, 68(17), 1402–1410. https://doi.org/10.1212/01.wnl.0000260065.57832.87.

    Article  PubMed  Google Scholar 

  • Müller, H. P., Turner, M. R., Grosskreutz, J., Abrahams, S., Bede, P., Govind, V., Prudlo, J., Ludolph, A. C., Filippi, M., & Kassubek, J. (2016). A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 87(6), 570–579. https://doi.org/10.1136/jnnp-2015-311952.

    Article  PubMed  Google Scholar 

  • Niven, E., Newton, J., Foley, J., Colville, S., Swingler, R., Chandran, S., Bak, T. H., & Abrahams, S. (2015). Validation of the Edinburgh cognitive and Behavioural amyotrophic lateral sclerosis screen (ECAS): A cognitive tool for motor disorders. Amyotroph Lateral Scler Frontotemporal Degener, 16(3–4), 172–179. https://doi.org/10.3109/21678421.2015.1030430.

    Article  PubMed  Google Scholar 

  • Phukan, J., Elamin, M., Bede, P., Jordan, N., Gallagher, L., Byrne, S., Lynch, C., Pender, N., & Hardiman, O. (2012). The syndrome of cognitive impairment in amyotrophic lateral sclerosis: A population-based study. Journal of Neurology & Psychiatry, 83(1), 102–108.

    Article  Google Scholar 

  • Pinto-Grau, M., Burke, T., Lonergan, K., McHugh, C., Mays, I., Madden, C., Vajda, A., Heverin, M., Elamin, M., Hardiman, O., & Pender, N. (2017). Screening for cognitive dysfunction in ALS: Validation of the Edinburgh cognitive and Behavioural ALS screen (ECAS) using age and education adjusted normative data. Amyotroph Lateral Scler Frontotemporal Degener, 18(1–2), 99–106. https://doi.org/10.1080/21678421.2016.1249887.

    Article  PubMed  Google Scholar 

  • Poletti, B., Solca, F., Carelli, L., Madotto, F., Lafronza, A., Faini, A., Monti, A., Zago, S., Calini, D., Tiloca, C., Doretti, A., Verde, F., Ratti, A., Ticozzi, N., Abrahams, S., & Silani, V. (2016). The validation of the Italian Edinburgh cognitive and Behavioural ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener, 17(7–8), 489–498. https://doi.org/10.1080/21678421.2016.1183679.

    Article  PubMed  Google Scholar 

  • Sarro, L., Agosta, F., Canu, E., Riva, N., Prelle, A., Copetti, M., Riccitelli, G., Comi, G., & Filippi, M. (2011). Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: A diffusion tensor tractography study. Ajnr: American Journal of Neuroradiology, 32(10), 1866–1872.

    Article  Google Scholar 

  • Schuster, C., Kasper, E., Dyrba, M., Machts, J., Bittner, D., Kaufmann, J., Mitchell, A. J., Benecke, R., Teipel, S., Vielhaber, S., & Prudlo, J. (2014). Cortical thinning and its relation to cognition in amyotrophic lateral sclerosis. Neurobiology of Aging, 35(1), 240–246. https://doi.org/10.1016/j.neurobiolaging.2013.07.020.

    Article  PubMed  Google Scholar 

  • Senda, J., Ito, M., Watanabe, H., Atsuta, N., Kawai, Y., Katsuno, M., Tanaka, F., Naganawa, S., Fukatsu, H., & Sobue, G. (2009). Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: A study with tractography and diffusion-tensor imaging. Amyotrophic Lateral Sclerosis, 10(5–6), 288–294. https://doi.org/10.3109/17482960802651717.

    Article  PubMed  Google Scholar 

  • Sgobio, C., Trabalza, A., Spalloni, A., Zona, C., Carunchio, I., Longone, P., & Ammassari-Teule, M. (2008). Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes, Brain, & Behavior, 7(4), 427–434.

    Article  Google Scholar 

  • Siciliano, M., Trojano, L., Trojsi, F., Greco, R., Santoro, M., Basile, G., Piscopo, F., D’Iorio, A., Patrone, M., Femiano, C., Monsurrò, M., Tedeschi, G., & Santangelo, G. (2017). Edinburgh cognitive and Behavioural ALS screen (ECAS)-Italian version: Regression based norms and equivalent scores. Neurological Sciences, 38(6), 1059–1068. https://doi.org/10.1007/s10072-017-2919-4.

    Article  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–1722.

    Article  Google Scholar 

  • Strong, M. J., Abrahams, S., Goldstein, L. H., Woolley, S., McLaughlin, P., Snowden, J., et al. (2017). Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener, 18(3–4), 153–174. https://doi.org/10.1080/21678421.2016.1267768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, L. J., Brown, R. G., Tsermentseli, S., AlChalabi, A., Shaw, C. E., Ellis, C. M., et al. (2013). Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology & Psychiatry, 84(5), 494–498.

    Article  Google Scholar 

  • Trojsi, F., Caiazzo, G., Siciliano, M., Femiano, C., Passaniti, C., Russo, A., Bisecco, A., Monsurrò, M. R., Cirillo, M., Esposito, F., Tedeschi, G., & Santangelo, G. (2019). Microstructural correlates of Edinburgh cognitive and Behavioural ALS screen (ECAS) changes in amyotrophic lateral sclerosis. Psychiatry Research: Neuroimaging, 288, 67–75. https://doi.org/10.1016/j.pscychresns.2019.04.001.

    Article  PubMed  Google Scholar 

  • Turner, M. R., Grosskreutz, J., Kassubek, J., Abrahams, S., Agosta, F., Benatar, M., Filippi, M., Goldstein, L. H., van den Heuvel, M., Kalra, S., Lulé, D., Mohammadi, B., & first Neuroimaging Symosium in ALS (NISALS). (2011). Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurology, 10(5), 400–403. https://doi.org/10.1016/S1474-4422(11)70049-7.

    Article  PubMed  Google Scholar 

  • Witgert, M., Salamone, A. R., Strutt, A. M., Jawaid, A., Massman, P. J., Bradshaw, M., Mosnik, D., Appel, S. H., & Schulz, P. E. (2010). Frontal-lobe mediated behavioral dysfunction in amyotrophic lateral sclerosis. European Journal of Neurology, 17(1), 103–110.

    Article  Google Scholar 

  • Ye, S., Ji, Y., Li, C., He, J., Liu, X., & Fan, D. (2016). The Edinburgh cognitive and Behavioural ALS screen in a Chinese amyotrophic lateral sclerosis population. PLoS One, 11(5), e0155496. https://doi.org/10.1371/journal.pone.0155496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Avants, B. B., Yushkevich, P. A., Woo, J. H., Wang, S., McCluskey, L. F., et al. (2007a). High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: An example study using amyotrophic lateral sclerosis. IEEE Transactions on Medical Imaging, 26(11), 1585–1597. https://doi.org/10.1109/TMI.2007.906784.

    Article  PubMed  Google Scholar 

  • Zhang, H., Yushkevich, P. A., Rueckert, D., & Gee, J. C. (2007b). Unbiased white matter atlas construction using diffusion tensor images. Med Image Comput Comput Assist Interv, 10(Pt 2), 211–218.

    PubMed  Google Scholar 

  • Zhang, Y., Schuff, N., Woolley, S. C., Chiang, G. C., Boreta, L., Laxamana, J., Katz, J. S., & Weiner, M. W. (2011). Progression of white matter degeneration in amyotrophic lateral sclerosis: A diffusion tensor imaging study. Amyotrophic Lateral Sclerosis, 12(6), 421–429. https://doi.org/10.3109/17482968.2011.593036.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Sneha Chenji.

Ethics declarations

Funding

SK received funding from the Canadian Institutes of Health Research (CIHR) Operating grant (CIHR MOP 123534).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The study was approved by the local human research ethics board at each participating site for CALSNIC.

Informed consent

Written informed consent was obtained from all participants in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenji, S., Ishaque, A., Mah, D. et al. Neuroanatomical associations of the Edinburgh cognitive and Behavioural ALS screen (ECAS). Brain Imaging and Behavior 15, 1641–1654 (2021). https://doi.org/10.1007/s11682-020-00359-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00359-7

Keywords

Navigation