Skip to main content
Log in

Relation of visual creative imagery manipulation to resting-state brain oscillations

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01–0.08 Hz) and the left caudate nucleus (0.2–0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01–0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., et al. (2012). Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917.

    Article  PubMed  Google Scholar 

  • Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251–270.

    Article  PubMed  Google Scholar 

  • Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behavioural Brain Research, 214(2), 143–156.

    Article  PubMed  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. D. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871.

    Article  CAS  PubMed  Google Scholar 

  • Aziz-Zadeh, L., Liew, S.-L., & Dandekar, F. (2012). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, nss021.

  • Baria, A. T., Baliki, M. N., Parrish, T., & Apkarian, A. V. (2011). Anatomical and functional assemblies of brain BOLD oscillations. The Journal of Neuroscience, 31(21), 7910–7919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basadur, M., Graen, G. B., & Green, S. G. (1982). Training in creative problem solving: effects on ideation and problem finding and solving in an industrial research organization. Organizational Behavior and Human Performance, 30(1), 41–70.

    Article  Google Scholar 

  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., et al. (2014). Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014a). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125–133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., et al. (2014b). Creating metaphors: the neural basis of figurative language production. NeuroImage, 90, 99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S. G., de Zwart, J. A., Shmueli, K., & Duyn, J. H. (2009). Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magnetic Resonance Imaging, 27(8), 1019–1029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blazhenkova, O., & Kozhevnikov, M. (2010). Visual-object ability: a new dimension of non-verbal intelligence. Cognition, 117(3), 276–301.

    Article  PubMed  Google Scholar 

  • Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boly, M., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A., et al. (2007). Baseline brain activity fluctuations predict somatosensory perception in humans. Proceedings of the National Academy of Sciences, 104(29), 12187–12192.

    Article  CAS  Google Scholar 

  • Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57.

    Article  PubMed  Google Scholar 

  • Cassotti, M., Agogué, M., Camarda, A., Houdé, O., & Borst, G. (2016). Inhibitory control as a core process of creative problem solving and idea generation from childhood to adulthood. New Directions for Child and Adolescent Development, 2016(151), 61–72.

    Article  PubMed  Google Scholar 

  • Chen, H., Yang, Q., Liao, W., Gong, Q., & Shen, S. (2009). Evaluation of the effective connectivity of supplementary motor areas during motor imagery using granger causality mapping. NeuroImage, 47(4), 1844–1853.

    Article  PubMed  Google Scholar 

  • Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., et al. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. NeuroImage, 102, 474–483.

    Article  PubMed  Google Scholar 

  • Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousijn, J., Zanolie, K., Munsters, R. J. M., Kleibeuker, S. W., & Crone, E. A. (2014). The relation between resting state connectivity and creativity in adolescents before and after training. PloS One, 9(9), e105780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniels-McGhee, S., & Davis, G. A. (1994). The imagery-creativity connection. The Journal of Creative Behavior, 28(3), 151–176.

    Article  Google Scholar 

  • de Souza, L. C., Guimarães, H. C., Teixeira, A. L., Caramelli, P., Levy, R., Dubois, B., & Volle, E. (2014). Frontal lobe neurology and the creative mind. Frontiers in Psychology, 5.

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011–1026.

    Article  Google Scholar 

  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822.

    Article  PubMed  Google Scholar 

  • Drago, V., Foster, P. S., Skidmore, F. M., & Heilman, K. M. (2009). Creativity in Parkinson’s disease as a function of right versus left hemibody onset. Journal of the Neurological Sciences, 276(1), 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Farah, M. J., Hammond, K. M., Levine, D. N., & Calvanio, R. (1988). Visual and spatial mental imagery: dissociable systems of representation. Cognitive Psychology, 20(4), 439–462.

    Article  CAS  PubMed  Google Scholar 

  • Finke, R. A. (1996). Imagery, creativity, and emergent structure. Consciousness and Cognition, 5(3), 381–393.

    Article  CAS  PubMed  Google Scholar 

  • Finke, R. A. (2014). Creative imagery: discoveries and inventions in visualization. Psychology press.

  • Finke, R. A., & Slayton, K. (1988). Explorations of creative visual synthesis in mental imagery. Memory & Cognition, 16(3), 252–257.

    Article  CAS  Google Scholar 

  • Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: theory, research, and applications. Cambridge, MA: MIT Press.

  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2(1–2), 56–78.

    Article  Google Scholar 

  • Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1(1), 13–36.

    Article  PubMed  Google Scholar 

  • Goel, V., & Vartanian, O. (2005). Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15(8), 1170–1177.

    Article  PubMed  Google Scholar 

  • Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilford, J. P., Christensen, P. R., Merrifield, P. R., & Wilson, R. C. (1978). Alternate uses: Manual of instructions and interpretation. Orange, CA: Sheridan Psychological Services.

  • Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2011). Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763–772.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., et al. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage, 55(1), 287–295.

    Article  PubMed  Google Scholar 

  • He, B. J. (2013). Spontaneous and task-evoked brain activity negatively interact. The Journal of Neuroscience, 33(11), 4672–4682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, Y., Wu, X., Hallett, M., Chan, P., & Wu, T. (2014). Frequency-dependent neural activity in Parkinson's disease. Human Brain Mapping, 35(12), 5815–5833.

    Article  PubMed  Google Scholar 

  • Huang, P., Qiu, L., Shen, L., Zhang, Y., Song, Z., Qi, Z., et al. (2013). Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Human Brain Mapping, 34(10), 2724–2732.

    Article  PubMed  Google Scholar 

  • Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398–409.

    PubMed  PubMed Central  Google Scholar 

  • Kapur, N. (1996). Paradoxical functional facilitation in brain-behaviour research. Brain, 119(5), 1775–1790.

    Article  PubMed  Google Scholar 

  • Kapur, N., Pascual-Leone, A., Ramachandran, V., Cole, J., Della Sala, S., & Manly, T. (2013). The paradoxical brain. Psychologist, 26(2), 102–105.

    Google Scholar 

  • Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews, 31(3), 377–395.

    Article  Google Scholar 

  • Kokotovich, V., & Purcell, T. (2000). Mental synthesis and creativity in design: an experimental examination. Design Studies, 21(5), 437–449.

    Article  Google Scholar 

  • Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University press.

  • Kozhevnikov, M., Kozhevnikov, M., Yu, C. J., & Blazhenkova, O. (2013). Creativity, visualization abilities, and visual cognitive style. British Journal of Educational Psychology, 83(2), 196–209.

    Article  PubMed  Google Scholar 

  • Le Boutillier, N. (1999). The role of mental imagery in creativity. Doctoral dissertation, Middlesex University.

  • LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: a meta-analytic review study. British Journal of Psychology, 94(1), 29–44.

    Article  PubMed  Google Scholar 

  • Leonardi, N., & Van De Ville, D. (2013). Identifying network correlates of brain states using tensor decompositions of whole-brain dynamic functional connectivity. Paper presented at the Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on.

  • Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences, 106(41), 17558–17563.

    Article  CAS  Google Scholar 

  • Liao, W., Ding, J., Marinazzo, D., Xu, Q., Wang, Z., Yuan, C., et al. (2011). Small-world directed networks in the human brain: multivariate granger causality analysis of resting-state fMRI. NeuroImage, 54(4), 2683–2694.

    Article  PubMed  Google Scholar 

  • Liu, X., Zhu, X.-H., & Chen, W. (2011). Baseline BOLD correlation predicts individuals’ stimulus-evoked BOLD responses. NeuroImage, 54(3), 2278–2286.

    Article  PubMed  Google Scholar 

  • Lotze, M., Erhard, K., Neumann, N., Eickhoff, S. B., & Langner, R. (2014). Neural correlates of verbal creativity: differences in resting-state functional connectivity associated with expertise in creative writing. Frontiers in Human Neuroscience, 8, 516.

  • Luo, J., Li, W., Qiu, J., Wei, D., Liu, Y., & Zhang, Q. (2013). Neural basis of scientific innovation induced by heuristic prototype. PloS One, 8(1), e49231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Mayseless, N., Aharon-Peretz, J., & Shamay-Tsoory, S. (2014). Unleashing creativity: the role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas. Neuropsychologia, 64, 157–168.

    Article  PubMed  Google Scholar 

  • Mennes, M., Zuo, X.-N., Kelly, C., Di Martino, A., Zang, Y.-F., Biswal, B., et al. (2011). Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. NeuroImage, 54(4), 2950–2959.

    Article  PubMed  Google Scholar 

  • Mihov, K. M., Denzler, M., & Förster, J. (2010). Hemispheric specialization and creative thinking: a meta-analytic review of lateralization of creativity. Brain and Cognition, 72(3), 442–448.

    Article  PubMed  Google Scholar 

  • Milivojevic, B., Hamm, J. P., & Corballis, M. C. (2009). Functional neuroanatomy of mental rotation. Journal of Cognitive Neuroscience, 21(5), 945–959.

    Article  PubMed  Google Scholar 

  • Miller, B. L., & Hou, C. E. (2004). Portraits of artists: emergence of visual creativity in dementia. Archives of Neurology, 61(6), 842–844.

    Article  PubMed  Google Scholar 

  • Ng, V. W. K., Bullmore, E. T., De Zubicaray, G. I., Cooper, A., Suckling, J., & Williams, S. C. R. (2001). Identifying rate-limiting nodes in large-scale cortical networks for visuospatial processing: an illustration using fMRI. Journal of Cognitive Neuroscience, 13(4), 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114(4), 600–604.

    Article  PubMed  Google Scholar 

  • Northoff, G., Qin, P., & Nakao, T. (2010). Rest-stimulus interaction in the brain: a review. Trends in Neurosciences, 33(6), 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Nyquist, H. (1928). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47(2), 617–644.

  • Palmiero, M., Nori, R., Aloisi, V., Ferrara, M., & Piccardi, L. (2015). Domain-specificity of creativity: a study on the relationship between visual creativity and visual mental imagery. Frontiers in Psychology, 6, 1870–1870.

  • Palmiero, M., Nori, R., & Piccardi, L. (2016). Visualizer cognitive style enhances visual creativity. Neuroscience Letters,  615, 98–101.

  • Pan, X., & Yu, H. (2016). Different effects of cognitive shifting and intelligence on creativity. The Journal of Creative Behavior. doi:10.1002/jocb.144

  • Park, H.-D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature Neuroscience, 17(4), 612–618.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. R., Kirk, I. J., & Waldie, K. E. (2015). Neural correlates of creative thinking and schizotypy. Neuropsychologia, 73, 94–107.

    Article  PubMed  Google Scholar 

  • Pyka, M., Beckmann, C. F., Schöning, S., Hauke, S., Heider, D., Kugel, H., et al. (2009). Impact of working memory load on FMRI resting state pattern in subsequent resting phases. PloS One, 4(9), e7198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.

    Article  PubMed  Google Scholar 

  • Reedijk, S. A., Bolders, A., & Hommel, B. (2013). The impact of binaural beats on creativity. Frontiers in Human Neuroscience, 7(786.10), 3389.

    Google Scholar 

  • Sadaghiani, S., & Kleinschmidt, A. (2013). Functional interactions between intrinsic brain activity and behavior. NeuroImage, 80, 379–386.

    Article  PubMed  Google Scholar 

  • Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W.-C.,. .. Royalty, A. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5.

  • Saggar, M., Quintin, E.-M., Bott, N. T., Kienitz, E., Chien, Y.-h., Hong, D. W.,. .. Reiss, A. L. (2016). Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: a longitudinal fMRI study. Cerebral Cortex, bhw171.

  • Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: remembering, imagining, and the brain. Neuron, 76(4), 677–694.

    Article  CAS  PubMed  Google Scholar 

  • Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger causality analysis in neuroscience and neuroimaging. The Journal of Neuroscience, 35(8), 3293–3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: an fMRI study. Human Brain Mapping, 34(5), 1088–1101.

    Article  PubMed  Google Scholar 

  • Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: the neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Song, X.-W., Dong, Z.-Y., Long, X.-Y., Li, S.-F., Zuo, X.-N., Zhu, C.-Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6(9), e25031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowden, P. T., Pringle, A., & Gabora, L. (2015). The shifting sands of creative thinking: connections to dual-process theory. Thinking & Reasoning, 21(1), 40–60.

    Article  Google Scholar 

  • Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D.,. .. Qiu, J. (2016). Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37(10), 3375–3387.

  • Swick, D., Ashley, V., & Turken, U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9(1), 1.

    Article  Google Scholar 

  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921–2929.

    Article  PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Sekiguchi, A., Nouchi, R., Kotozaki, Y., Nakagawa, S., et al. (2013). Association of hair iron levels with creativity and psychological variables related to creativity. Frontiers in Human Neuroscience, 7(875), 10.3389.

    Google Scholar 

  • Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Tung, K.-C., Uh, J., Mao, D., Xu, F., Xiao, G., & Lu, H. (2013). Alterations in resting functional connectivity due to recent motor task. NeuroImage, 78, 316–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verstijnen, I. M., van Leeuwen, C., Goldschmidt, G., Hamel, R., & Hennessey, J. (1998). Creative discovery in imagery and perception: combining is relatively easy, restructuring takes a sketch. Acta Psychologica, 99(2), 177–200.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Lu, M., Fan, Y., Wen, X., Zhang, R., Wang, B., et al. (2015). Exploring brain functional plasticity in world class gymnasts: a network analysis. Brain Structure and Function, 1–17.

  • Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.

    Article  PubMed  Google Scholar 

  • Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS One, 4(5), e5743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Long, X.-Y., Yang, Y., Yan, H., Zhu, C.-Z., Zhou, X.-P., et al. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 36(1), 144–152.

    Article  PubMed  Google Scholar 

  • Yuan, B.-K., Wang, J., Zang, Y.-F., & Liu, D.-Q. (2014). Amplitude differences in high-frequency fMRI signals between eyes open and eyes closed resting states. Frontiers in Human Neuroscience, 8(503), 10.3389.

    Google Scholar 

  • Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng, L., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91.

    Article  Google Scholar 

  • Zaidel, D. W. (2014). Creativity, brain, and art: biological and neurological considerations. Frontiers in Human Neuroscience, 8, 389.

  • Zang, Z.-X., Yan, C.-G., Dong, Z.-Y., Huang, J., & Zang, Y.-F. (2012). Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426.

    Article  PubMed  Google Scholar 

  • Zhao, Q., Zhou, Z., Xu, H., Fan, W., & Han, L. (2014). Neural pathway in the right hemisphere underlies verbal insight problem solving. Neuroscience, 256, 334–341.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Alsop, D. C., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58(1), 26–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al. (2010). The oscillating brain: complex and reliable. NeuroImage, 49(2), 1432–1445.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiwang Huang or Ming Liu.

Ethics declarations

Funding

This work was supported by the Natural Science Foundation of China (No. 31371049 and No. 31600907) and the Guangdong Provincial Natural Science Foundation of China (No. 2014A030310487).

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Yuxuan Cai and Delong Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Zhang, D., Liang, B. et al. Relation of visual creative imagery manipulation to resting-state brain oscillations. Brain Imaging and Behavior 12, 258–273 (2018). https://doi.org/10.1007/s11682-017-9689-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9689-8

Keywords

Navigation