Skip to main content
Log in

Genotyping ex situ trees of Abies nebrodensis translocated from the original Sicilian population to enrich the gene pool

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

As a dynamic ex situ conservation strategy, a clonal seed orchard was started in a nursery in Pomaio (POM) in central Italy in 1993 for an assisted migration experiment of Abies nebrodensis (Lojac.) Mattei. Two artificial ex situ populations were planted with this gene pool: a seedling arboretum in Pieve Santo Stefano (PSS) and a small dendrological collection in Papiano (PAP), both originating from the Sicilian relict population. Here, using AFLP markers, we estimated the relatedness among the relocated genotypes of the three collections to check whether the three collections had sufficient genetic variability to be considered as additional sources of variability to the original gene pool for the assisted migration strategy. High individual genetic variability was found in the collections; each plant had a different genotype and was confirmed to belong to its population of origin. PAP and PSS trees were shown to be only from the original population of A. nebrodensis species and were derived from a limited set of maternal fertile genotypes. Based on the Sicilian fir population inventory, nursery production in Sicily, and structure clustering analysis, close genetic relationships among POM, PAP and several PSS trees (1–35) were evident. Similarly, the PSS group (36–78) was genetically close to tree 1 of POM and in a lesser proportion to plants 7 and 9 of POM. The sampling of seedlings used to form batches in the nursery might have influenced the structure of the resultant plantations. All genotypes will be useful for enriching the original gene pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acheré V, Favre JM, Besnard G, Jeandroz S (2005) Genomic organization of molecular differentiation in Norway spruce (Picea abies). Mol Ecol 14:3191–3201

    Article  PubMed  Google Scholar 

  • Ahn JY, Lee JW, Lee MW, Hong KN (2019) Genetic diversity and structure of Carpinus laxiflora populations in South Korea based on AFLP markers. Forest Sci Technol 15(4):192–201

    Article  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population Studies. Mol Ecol 16:5115–5139

    Article  CAS  PubMed  Google Scholar 

  • Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann for Sci 59:823–832

    Article  Google Scholar 

  • Biondi E, Raimondo FM (1980) Primo rinvenimento di legni fossili sulle Madonie. Giorn Bot Ital 114(3–4):128–129

    Google Scholar 

  • Bobo-Pinilla J, Salmerón-Sánchez E, Mendoza-Fernández AJ, Mota JF, Peñas J (2022) Conservation and phylogeography of plants: from the Mediterranean to the rest of the world. Diversity 14(78):1–23

    Google Scholar 

  • Bonin A, Ehrich D, Mantel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    Article  CAS  PubMed  Google Scholar 

  • Bou Dagher-Kharrat M, Mariette S, François L, Fady B, Grenier-de March G, Plomion CH, Savouré A (2007) Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet Genomes 3:275–285

    Article  Google Scholar 

  • Cervera MT, Remington D, Frigerio JM, Storme V, Ivens B, Boerjan W, Plomion C (2000) Improved AFLP analysis of tree species. Can J for Res 30(10):1608–1616

    Article  CAS  Google Scholar 

  • Costa P, Pot D, Dubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Cervera MT, Remington DL, Plomion C (2000) A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theor Appl Genet 100:39–48

    Article  CAS  Google Scholar 

  • Costa R, Pereira G, Garrido I, Tavares-de-Sousa MM, Espinosa F (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS ONE 11(4):1–15

  • Dent AE, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359–361

  • Di XY, Li XN, Wang QX, Wang MB (2014) Genetic diversity of natural populations of Larix principis-rupprechtii in Shanxi Province China. Biochem Syst Ecol 54:71–77

    Article  CAS  Google Scholar 

  • Di XY, Wang MB (2013) Genetic diversity and structure of natural Pinus tabulaeformis populations in North China using amplified fragment length polymorphism (AFLP). Biochem Syst Ecol 51:269–275

    Article  CAS  Google Scholar 

  • Ducci F (2014) Species restoration approach, chapter 151 Species restoration through dynamic ex situ conservation: Abies nebrodensis as a model. In: Genetic considerations in ecosystem restoration using native tree species State of the World’s Forest Genetic Resources – Thematic Study Ed Bozzano et al Rome FAO and Bioversity International, pp 225–232

  • Ducci F, Proietti R, Favre JM (1999) Allozyme assessment of genetic diversity within the relic Sicilian fir Abies nebrodensis (Lojac.) Mattei. Ann for Sci 56:345–355

    Article  Google Scholar 

  • Ehrich D, Gaudeul M, Assefa A, ehrich Koch MA, Mummenhoff K, Nemomissa S, Intrabiodiv Consortium, Brochmann C, 2007 Ehrich D, Gaudeul M, Assefa A,ehrich Koch MA, Mummenhoff K, Nemomissa S, Intrabiodiv Consortium, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16(12): 2542–2559

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14 (8): 2611–2620

  • Fady B, Aravanopoulos FA, Alizoti P, Mátyás C, von Wühlisch G, Westergren M, Belletti P, Cvjetkovic B, Ducci F, Huber G, Kelleher CT, Khaldi A, Dagher Kharrat MB, Kraigher H, Kramer K, Mühlethaler U, Peric S, Perry A, Rousi M, Sbay H, Stojnic S, Tijardovic M, Tsvetkov I, Varela MC, Vendramin GG, Zlatanov T (2016) Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. Forest Ecol Manag 375: 66–75

  • Farjon A (2018) The Kew review: Conifers of the world. Kew Bull 73(8).

  • Felsenstein J (2004) Inferring phylogenies. Book Sinauer Associates Inc Publishers Sunderland Massachusetts

  • Fuentes-Utrilla P, Valbuena-Carabana M, Ennos R, Gil L (2014) Population clustering and clonal structure evidence the relict state of Ulmus minor Mill. in the Balearic Islands. Heredity 113: 21–31

  • Gaudeul M, Rouhan G, Gardner MF, Hollingsworth PM (2012) AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae). Am J of Bot 99(1):68–81

    Article  Google Scholar 

  • Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048

  • Gussone G (1843) Florae Siculae synopsis. I-Il. - Napoli P II: pp. 647; add. pp. 883

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588

    Article  PubMed  Google Scholar 

  • Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57(3):347–366

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9 (5):1322–1332

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23 (14): 1801–1806

  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480

    Article  CAS  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Richardson BA, McDonald GI, Klopfenstein NB (2011) Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genet Genomes 7:11–21

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M , Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–91

  • Krauss SL (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Latch EK, Dharmarajan G, Glaubitz JC, Olin ER, Rhodes JR (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Mariette S, Chagneâ D, Leâzier C, Pastuska P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479

    Article  CAS  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GenoType and GenoDive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

  • Méndez-González ID, Jardón-Barbolla L, Jaramillo-Correa JP (2017) Differential landscape effects on the fine-scale genetic structure of populations of a montane Conifer from central Mexico. Tree Genet Genomes 13:30

    Article  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci12 (3)

  • Morandini R (1969) Abies nebrodensis (Lojac) Mattei: Inventario 1968. Pubb Istit Sper Selvic 18:1–93

    Google Scholar 

  • Morandini R, Ducci F, Menguzzato G (1994) Abies nebrodensis (Lojac) Mattei–Inventario 1992. Ann Ist Sper Selv XXII:5–51

  • Paglia G, Morgante M (1998) PCR-based multiplex DNA fingerprinting technique for the analysis of Conifer genome. Mol Breed 4:173–177

    Article  CAS  Google Scholar 

  • Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001) Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac) Mattei and three neighboring Abies species. Theor Appl Genet 102:733–740

    Article  CAS  Google Scholar 

  • Pasta S, Sala G, La Mantia T, Bondì C, Tinner W (2020) The past distribution of Abies nebrodensis (Lojac) Mattei: results of a multidisciplinary study. Veget Hist Archaeobot 29:357–371

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS ONE 7(3):1–8

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010–2012) Documentation for STRUCTURE software Available with the program at: http://pritchbsduchicagoedu/structurehtm

  • Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215(12):1493–1511

    Article  Google Scholar 

  • Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11:869–877

    Article  CAS  PubMed  Google Scholar 

  • Ritland K (2005) Multilocus estimation of pairwise relatedness with dominant markers. Mol Ecol 14:3157–3165

    Article  CAS  PubMed  Google Scholar 

  • Roncallo PF, Beaufort V, Larsen AO, Dreisigacker S, Echenique V (2019) Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L var durum) collection. PLoS ONE 14(6)

  • Sánchez-Gómez P, Jiménez JF, Cánovas1 JL, Vera1 JB, Hensen I, Aouissat M (2018) Genetic structure and phylogeography of Juniperus phoenicea complex throughout Mediterranean and Macaronesian regions: different stories in one. Ann For Sci 75:75

  • Sánchez-Robles JM, Balao F, Terrab A, Garcia-Castano JL, Ortiz MA, Vela E, Talavera S (2014) Phylogeography of SW Mediterranean firs: different European origins for the North African Abies species. Mol Phylogenet Evol 79:42–53

    Article  PubMed  Google Scholar 

  • Schicchi R, Bazan G, Raimondo F (1997) La progenie di Abies nebrodensis (Lojac) Mattei accertata in vivaio. Quad Bot Ambient Appl 8:3–9

    Google Scholar 

  • Schlüter PhM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Scotti I, González-Martínez SC, Budde KB, Lalagüe H (2016) Fifty years of genetic studies: What to make of the large amounts of variation found within populations? Ann for Sci 73:69–75

    Article  Google Scholar 

  • Semerikova SA, Lascoux M, Semerikov VL (2012) Nuclear and cytoplasmic genetic diversity reveals long-term population decline in Abies semenovii, an endemic fir of central Asia. Can J For Res 42:2142–2152

  • Semerikova SA, Semerikov VL (2011) Genetic variability of Siberian fir Abies sibirica Ledeb inferred from AFLP markers. Russ J Genet 47 (2):241–246

  • Semerikova SA, Semerikov VL (2016) Phylogeny of firs (genus Abies, Pinaceae) based on multilocus nuclear markers (AFLP). Russ J Genet 52 (11):1164–1175

  • Semerikova SA, Semerikov VL, Lascoux M (2011) Post-glacial history and introgression in Abies (Pinaceae) species of the Russian Far East inferred from both nuclear and cytoplasmic markers. J Biogeogr 38:326–340

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research 3rd Edition WH Freeman and Co New York: pp 896

  • Tang SQ, Dai WJ, Li MS, Zhang Y, Geng YP, Wang L, Zhong Y (2008) Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133:21–30

  • Thomas P (2017) Abies nebrodensis. The IUCN red list of threatened species 2017: e.T30478A91164876. Downloaded on 10 November 2021. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T30478A91164876.en

  • Vanden Broeck A, Cox K, Melosik I, Maes B, Smets K (2018) Genetic diversity loss and homogenization in urban trees: the case of Tilia × europaea in Belgium and the Netherlands. Biodivers Conserv 27:3777–3792

  • Vekemans X, Beauwens T, Roldçn-Ruiz I LM (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Venturella G, Mazzola P, Raimondo FM (1997) Strategies for the conservation and restoration of the relict population of Abies nebrodensis (Lojac.) Mattei Bocconea 7:417–425

  • Virgilio F, Schicchi R, La Mela Veca DS (2000) Aggiornamento dell’inventario della popolazione relitta di Abies nebrodensis (Lojac) Mattei. Naturalista Sicil S IV XXIV 1–2:13–54

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Abbott RJ, Ingvarsson PK, Liu JQ (2014) Increased genetic divergence between two closely related fir species in areas of range overlap. Ecol Evol 4 (7):1019–1029

  • Wang XR, Chhatre VE, Nillson MC, Song W, Zackrisson O, Szmidt AE (2003) Island population structure of Norway Spruce (Picea abies) in northern Sweden. Int J Plant Sci 164 (5):711–717

  • Wessa P (2021) Free statistics software office for research development and education V 1.2.1 URL: https://wwwwessanet/

  • Williams MI, Dumroese RK (2013) Preparing for climate change: forestry and assisted migration. J For 111: 287–297

  • Woodhead W, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, M Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695

  • Xu SQ, Tauer CG, Nelson CD (2008) Genetic diversity within and among populations of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.). Tree Genet Genomes 4(4):859–868

  • Xue XM, Wang YH, Korpelainen H, Li CY (2005) Assessment of AFLP-based genetic variation in the populations of Picea asperata. Silvae Genet 54 (1):24–30

  • Yang AH, Wei N, Fritsch PW, Yao XH (2016) AFLP genome scanning reveals divergent selection in natural populations of Liriodendron chinense (Magnoliaceae) along a latitudinal transect front. Plant Sci 7:698

  • Zelener N, Marcucci Poltri SN, Bartoloni N, López CR, Hopp HE (2005) Selection strategy for a seedling seed orchard design based on trait selection index and genomic analysis by molecular markers: a case study for Eucalyptus dunnii. Tree Physiol 25:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Juan Fernandez and Prof Nathalie Frascaria-Lacoste for suggestions and help developing the AFLP analysis protocol, and Dr Simona Pecchioli and Dr Silvia Carnevale for doing the molecular analyses at CREA FL Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna De Rogatis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: Our research was funded by the Italian Ministry for Agriculture, Food and Forestry Policies in the framework of the “FAO-RGV (FAO-Vegetal Genetic Resources) Project”.

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 424 kb)

Supplementary file2 (XLSX 122 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rogatis, A., Ducci, F., Guerri, S. et al. Genotyping ex situ trees of Abies nebrodensis translocated from the original Sicilian population to enrich the gene pool. J. For. Res. 34, 1095–1106 (2023). https://doi.org/10.1007/s11676-022-01534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-022-01534-w

Keywords

Navigation