Skip to main content
Log in

The effect of ozone on pine forests in South-Eastern France from 2017 to 2019

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

In South-Eastern forests of France, risks linked to the effects of tropospheric ozone (O3) are real; its annual impact has been observed specifically near the coastline and in high altitude mountains during the period 2017 − 2019. In this study, the risk assessment of O3 pollutant was carried out using two approaches based on forest response indicators such as O3 specific foliar visible injury and by stomatal O3 flux. Phytotoxic O3 dose values (POD0) were obtained by the DO3SE model. The model requires hourly O3 concentration for POD0 calculation. A modified approach that uses measurements from passive samplers (monthly average O3 concentration) was tested for the calculation of POD0 and test results showed good agreement with the POD0 calculated using hourly O3 data. In the model input file, the average O3 concentration is used for POD0, and this could be useful for POD0 calculation when the active monitor is limited. In this study, a flux-based assessment provided better correlation with O3 specific leaf injury, which is also species-specific. Foliar visible injury in response to O3 indicates that Pinus cembra and Pinus halepensis are more affected and therefore more sensitive than Pinus sylvestris. The POD0 and stomatal conductance (Gsto) seem to be induced by environmental factors, primarily rainfall and the soil water potential (ƒSWP). The correlation between the O3 flux metric and environmental variables with forest response indicators by Spearman rank test confirms P. cembra as one of the most sensitive species to O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aasamaa K, Sõber A (2011) Responses of stomatal conductance to simultaneous changes in two environmental factors. Tree Physiol 31(8):855–864

    Article  PubMed  Google Scholar 

  • Anav A, De Marco A, Proietti C, Alessandri A, Dell’Aquila A, Cionni I, Friedlingstein P, Khvorostyanov D, Menut L, Paoletti E (2016) Comparing concentration—based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biol 22(4):1608–1627

    Article  Google Scholar 

  • Ashmore M, Emberson L, Karlsson PE, Pleijel H (2004) New directions: a new generation of ozone critical levels for the protection of vegetation in Europe. Atmos Environ 38:2213–2214

    Article  CAS  Google Scholar 

  • Assis PI, Alonso R, Meirelles ST, Moraes RM (2015) DO3SE model applicability and O3 flux performance compared to AOT40 for an O3 sensitive tropical tree species (Psidium guajava L.‘Paluma’). Environ Sci Pollut Res 22(14):10873–10881

    Article  CAS  Google Scholar 

  • Bernard NL, Gerber MJ, Astre CM, Saintot MJ (1999) Ozone measurement with passive samplers: validation and use for ozone pollution assessment in Montpellier. France Environ Sci Technol 33(2):217–222

    Article  CAS  Google Scholar 

  • Bičárová S, Shashikumar A, Dalstein-Richier L, Lukasová V, Adamčíková K, Pavlendová H, Sitková Z, Buchholcerová A, Bilčík D (2020) The response of Pinus species to ozone uptake in different climate regions of Europe. Cent Eur for J 66(4):255–268

    Google Scholar 

  • Bičárová S, Sitková Z, Pavlendová H, Fleischer P, Bytnerowicz A (2019) The role of environmental factors in ozone uptake of Pinus mugo Turra. Atmos Pollut Res 10(1):283–293

    Article  Google Scholar 

  • Blum O, Bytnerowicz A, Manning W, Popovicheva L (1997) Ambient tropospheric ozone in the Ukrainian Carpathian Mountains and Kiev region: detection with passive samplers and bioindicator plants. Environ Pollut 98(3):299–304

    Article  CAS  Google Scholar 

  • Buker P, Morrissey T, Briolat A, Falk R, Simpson D, Tuovinen J, Alonso R, Barth S, Baumgarten M, Grulke N (2012) DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmos Chem Phys 12(12):5537–5562

    Article  CAS  Google Scholar 

  • Bussotti F, Schaub M, Cozzi A, Kräuchi N, Ferretti M, Novak K, Skelly J (2003) Assessment of ozone visible symptoms in the field: perspectives of quality control. Environ Pollut 125(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Bytnerowicz A, Omasa K, Paoletti E (2007) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Pollut 147(3):438–445

    Article  CAS  PubMed  Google Scholar 

  • Cailleret M, Ferretti M, Gessler A, Rigling A, Schaub M (2018) Ozone effects on European forest growth—towards an integrative approach. J Ecol 106(4):1377–1389

    Article  CAS  Google Scholar 

  • Clifton OE, Lombardozzi DL, Fiore AM, Paulot F, Horowitz LW (2020) Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone. Environ Res Lett 15(11):114059

    Article  CAS  Google Scholar 

  • Cox RM (2003) The use of passive sampling to monitor forest exposure to O3, NO2 and SO2: a review and some case studies. Environ Pollut 126(3):301–311

    Article  CAS  PubMed  Google Scholar 

  • Crutzen PJ (1995) Ozone in the troposphere. In: Singh HB (ed) Composition, chemistry, and climate of the atmosphere. Van Nostrand Reinhold Publ, pp 349–393

    Google Scholar 

  • Dalstein L, Ciriani ML (2019) Ozone foliar damage and defoliation monitoring of P. cembra between 2000 and 2016 in the southeast of France. Environ Pollut 244:451–461

    Article  CAS  PubMed  Google Scholar 

  • Dalstein L, Teton S, Cotiereau C, VAS N, (2001) Niveaux d’ozone et endommagement foliaire sur quelques essences méditerranéennes Ozone levels and foliar injuries on Mediterranean species. Pollut Atmosphérique 170:263–277

    CAS  Google Scholar 

  • Dalstein L, Ulrich E, Vas N, Cecchini S (2008) Effets de l’ozone sur quelques peuplements forestiers du réseau RENECOFOR. Forêt Méditerranéenne 29:329–326

    Google Scholar 

  • Dalstein L, Vas N (2005) Ozone concentrations and ozone-induced symptoms on coastal and alpine Mediterranean pines in southern France. Water Air Soil Pollut 160(1–4):181–195

    Article  CAS  Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33(9):1419–1438

    PubMed  Google Scholar 

  • Darby LS, McKeen SA, Senff CJ, White AB, Banta RM, Post MJ, Brewer WA, Marchbanks R, Alvarez RJ, Peckham SE (2007) Ozone differences between near-coastal and offshore sites in New England: Role of meteorology. J Geophys Res Atmos 112(D16):16–19

    Article  Google Scholar 

  • De Marco A (2016) A multi-sites analysis on the ozone effects on gross primary production of European forests. Sci Total Environ 556:1–11

    Article  PubMed  Google Scholar 

  • Delbeke J, Vis P, Klaassen G, Lefevere J, Damien M (2015) EU climate policy explained. Routledge, p 152

    Book  Google Scholar 

  • Eamus D, Taylor DT, Macinnis CM, Shanahan S, Silva LD (2008) Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant Cell Environ 31(3):269–277

    Article  PubMed  Google Scholar 

  • Emberson L, Ashmore M, Cambridge H, Simpson D, Tuovinen J-P (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109(3):403–413

    Article  CAS  PubMed  Google Scholar 

  • Emberson L, Ashmore M, Simpson D, Tuovinen J-P, Cambridge H (2001) Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut 130(1–4):577–582

    Article  Google Scholar 

  • Emberson LD, Büker P, Ashmore MR (2007) Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech and oak across different climate regions. Environ Pollut 147(3):454–466

    Article  CAS  PubMed  Google Scholar 

  • Ferretti M (1994) Mediterranean Forest Trees a Guide for Crown Assessment. Available at: https://businessdocbox.com/Forestry/85652580-Commission-of-the-european-communities-united-nations-economic-commission-for-europe-mediterranean-forest-trees-a-guide-for-crown-assessment.html

  • Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97(1–2):91–106

    Article  CAS  PubMed  Google Scholar 

  • Gerosa G, Ferretti M, Bussotti F, Rocchini D (2007) Estimates of ozone AOT40 from passive sampling in forest sites in South-Western Europe. Environ Pollut 145(3):629–635

    Article  CAS  PubMed  Google Scholar 

  • Grünhage L, Matyssek R, Häberle KH, Wieser G, Metzger U, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W (2012) Flux-based ozone risk assessment for adult beech forests. Trees 26(6):1713–1721

    Article  Google Scholar 

  • Grünhage L, Matyssek R, Wieser G, Häberle KH, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W, Zimmermann L (2013) Flux-based ozone risk assessment for adult beech and spruce forests, Developments in Environmental Science. Available at: https://www.sciencedirect.com/science/article/abs/pii/B9780080983493000128?via%3Dihub

  • Guerreiro CB, Foltescu V, De Leeuw F (2014) Air quality status and trends in Europe. Atmos Environ 98:376–384

    Article  CAS  Google Scholar 

  • Hamid HA, Hazman M, Nadzir M, Uning R, Latif M, Kannan N (2019) Anthropogenic and biogenic volatile organic compounds and ozone formation potential in ambient air of Kuala Lumpur, Malaysia. IOP Conf Ser: Earth Environ Sci 228: Available at: https://iopscience.iop.org/article/https://doi.org/10.1088/1755-1315/228/1/012001/pdf

  • Hoshika Y, Hajima T, Shimizu Y, Takigawa M, Omasa K (2011) Estimation of stomatal ozone uptake of deciduous trees in East Asia. Ann for Sci 68(3):607–616

    Article  Google Scholar 

  • Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T, Paoletti E (2015) Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci Rep 5(1):1–8

    Article  Google Scholar 

  • Jarvis P (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B Biol Sci 273(927):593–610

    Article  CAS  Google Scholar 

  • Kang JE, Song SK, Lee HW, Kim YK (2012) The Influence of meteorological conditions and complex topography on ozone concentrations in a valley area near coastal metropolitan cities. Terr Atmospheric Ocean Sci 23(1):25–38

    Article  Google Scholar 

  • Konovalov I, Beekmann M, Burrows J, Richter A (2008) Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions. Atmos Chem Phys 8:2623–2641

    Article  CAS  Google Scholar 

  • Krupa S, Nosal M, Peterson D (2001) Use of passive ambient ozone (O3) samplers in vegetation effects assessment. Environ Pollut 112(3):303–309

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Kwak MJ, Park SH, Kim HD, Lim YJ, Jeong SG, Choi YS, Woo SY (2021) Ozone response of leaf physiological and stomatal characteristics in Brassica juncea L. at supraoptimal temperatures. Land 10(4):357

    Article  Google Scholar 

  • Malley C (2018) Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa Sci Anthrop 6(1):12–41

    Google Scholar 

  • Marzuoli R, Gerosa G, Bussotti F, Pollastrini M (2019) Assessing the impact of ozone on forest trees in an integrative perspective: are foliar visible symptoms suitable predictors for growth reduction? Critical Rev Forests 10(12):1144

    Article  Google Scholar 

  • Marzuoli R, Gerosa G, Desotgiu R, Bussotti F, Denti AB (2009) Ozone fluxes and foliar injury development in the ozone-sensitive poplar clone Oxford (Populus maximowiczii × Populus berolinensis): a dose–response analysis. Tree Physiol 29(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson PE, Paoletti E, Sanz M, Schaub M, Wieser G (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146(3):587–607

    Article  CAS  PubMed  Google Scholar 

  • McCallum S, Dworak T, Prutsch A, Kent N, Mysiak J, Bosello F, Klostermann J, Diugolecki A, Williams E, Konig M (2013) Support to the development of EU startegy for adaptation to climate change: Background report to the impact assessment, Part I-Problem definition, policy context and assessment of policy options. Available at: https://ec.europa.eu/clima/system/files/2016-11/background_report_part1_en.pdf

  • Meixner FX, Eugster W (1999) Effects of landscape pattern and topography on emissions and transport. In: Tenhunen JD, Kabat PP (eds) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, pp 147–175

    Google Scholar 

  • Millán MM, Mantilla E, Salvador R, Carratalá A, Sanz MJ, Alonso L, Gangoiti G, Navazo M (2000) Ozone cycles in the western Mediterranean basin: interpretation of monitoring data in complex coastal terrain. J Appl Meteorol 39(4):487–508

    Article  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernández IG, Grünhage L (2011a) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45(28):5064–5068

    Article  CAS  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo Roselló E, Danielsson H, Emberson L, González I, Grünhage L, Harmens H, Hayes F, Karlsson P, Simpson D (2011b) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068

    Article  CAS  Google Scholar 

  • Moatti JP, Thiébault S (2018) The Mediterranean region under climate change: a scientific update. Available at: https://books.openedition.org/irdeditions/22908?lang=en

  • Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure and flux based ozone indices for predicting vegetation effects. Atmos Environ 40(10):1869–1888

    Article  CAS  Google Scholar 

  • Naumann S, Anzaldua G, Berry P, Burch S, Davis M, Larsen AF, Gerdes H, Sanders M (2011) Assessment of the potential of ecosystem based approaches to climate change adaptation and mitigation in Europe. Final report to the European Commission. Available at: https://ec.europa.eu/environment/nature/climatechange/pdf/EbA_EBM_CC_FinalReport.pdf

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ 35(32):5393–5409

    Article  CAS  Google Scholar 

  • Panek JA (2004) Ozone uptake, water loss and carbon exchange dynamics in annually drought stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling. Tree Physiol 24(3):277–290

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S, Conte A, Ciriani M, Dalstein L, Marco A (2019) Toward stomatal flux based forest protection against ozone: The MOTTLES approach. Sci Total Environ 691:516–527

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Grulke NE (2010) Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environ Pollut 158(8):2664–2671

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150(1):85–95

    Article  CAS  PubMed  Google Scholar 

  • Pleijel H (2000) Ground-level ozone: A problem largely ignored on southern Europe, Swedish NGO Secretariat on acid rain. In: Pleijel H (ed) Air pollution and climate series. Swedish Secretariat on Acid Rain. Available at: https://airclim.org/sites/default/files/documents/APC12.pdf

  • Pleijel H, Klingberg J, Karlsson GP, Engardt M, Karlsson PE (2013) Surface ozone in the marine environment horizontal ozone concentration gradients in coastal areas. Water, Air, Soil Pollut 224(7):1603

    Article  Google Scholar 

  • Proietti C, Anav A, De Marco A, Sicard P, Vitale M (2016) A multi-sites analysis on the ozone effects on gross primary production of European forests. Sci Total Environ 556:1–11

    Article  CAS  PubMed  Google Scholar 

  • Proietti C, Fornasier MF, Sicard P, Anav A, Paoletti E, De Marco A (2021) Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014. J Res 32(2):543–551

    Article  CAS  Google Scholar 

  • Rist D, Davis D (1979) The influence of exposure temperature and relative humidity on the response of pinto bean foliage to sulfur dioxide. Phytopathology 69:231–235

    Article  CAS  Google Scholar 

  • Sadiq M, Tai AP, Lombardozzi D, Val Martin M (2017) Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks. Atmos Chem Phys 17(4):3055–3066

    Article  CAS  Google Scholar 

  • Sanz M, Calatayud V, Sánchez Peña G (2007) Measures of ozone concentrations using passive sampling in forests of South Western Europe. Environ Pollut 145(3):620–628

    Article  CAS  PubMed  Google Scholar 

  • Sanz M, Sanz F, Sanchez-Peaa G (2001) Spatial and annual temporal distribution of ozone concentrations in the Madrid basin using passive samplers. Sci World J 1:785–795

    Article  CAS  Google Scholar 

  • Sanz MJ, Calatayud V (2012) Ozone injury in European forest species. Available at: http://www.ozoneinjury.org [accessed on 21.10.2021].

  • Sartelet KN, Couvidat F, Seigneur C, Roustan Y (2012) Impact of biogenic emissions on air quality over Europe and North America. Atmos Environ 53:131–141

    Article  CAS  Google Scholar 

  • Schaub M, Calatayud V, Ferretti M, Brunialti G, Lövblad G, Krause G, Sanz M (2016) Part XV: monitoring of air quality. In: UNECE ICP Forests Programme Coordinating Centre (ed.), Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Available at : https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part15.pdf

  • Sicard P, Dalstein L (2015) Health and vitality assessment of two common pine species in the context of climate change in southern Europe. Environ Res 137:235–245

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, Dalstein L, Vas N (2011) Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000–2008 period. Environ Pollut 159(2):351–362

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, De Marco A, Dalstein L, Tagliaferro F, Renou C, Paoletti E (2016) An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Sci Total Environ 541:729–741

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    Article  CAS  Google Scholar 

  • Skelly JM (2000) Tropospheric ozone and its importance to forests and natural plant communities of the northeastern United States. Northeast Nat 7(3):221–236

    Article  Google Scholar 

  • Smith GC, Coulston JW, Connell BM (2008) Ozone bioindicators and forest health: a guide to the evaluation, analysis, and interpretation of the ozone injury data in the Forest Inventory and Analysis Program, Gen Tech Rep NRS-34. Available at: https://www.nrs.fs.fed.us/pubs/gtr/gtr_nrs34.pdf

  • Stockwell WR, Kramm G, Scheel HE, Mohnen V, Seiler W (1997) Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H, Wellburn A, Heath R (eds) Forest decline and ozone, ecological studies. Springer, pp 1–38

    Google Scholar 

  • Szarka J (2011) Climate policy in France: between national interest and global solidarity? Politique Eur 33(1):155–183

    Article  Google Scholar 

  • Törnqvist L, Vartia P, Vartia YO (1985) How should relative changes be measured? Am Stat 39(1):43–46

    Google Scholar 

  • Urban J, Ingwers M, McGuire MA, Teskey RO (2017) Stomatal conductance increases with rising temperature. Plant Signal Behav 12(8):e1356534

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Shugart HH, Shuman JK, Lerdau MT (2016) Forests and ozone: Productivity, carbon storage and feedbacks. Sci Rep 6(1):1–7

    Google Scholar 

  • Watanabe T, Izumi T, Matsuyama H (2016) Accumulated phytotoxic ozone dose estimation for deciduous forest in Kanto, Japan in summer. Atmos Environ 129:176–185

    Article  CAS  Google Scholar 

  • Wieser G, Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: Quantifying the physiological effects of ozone exposure. Trees 7(4):227–232

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the technical contribution of the staff of Mercantour National Park. We would like to thank to IVL for providing passive sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalstein-Richier Laurence.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The project was funded by the Alcotra program MITIMPACT (Grand No. 1671/ 1450109240) and the Scientific Grant Agency of the Slovak Republic, VEGA (Project No. 2/0093/2).

The online version is available at http://www.springerlink.com.

Corresponding editor: Zhu Hong.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashikumar, A., Bičárová, S. & Laurence, DR. The effect of ozone on pine forests in South-Eastern France from 2017 to 2019. J. For. Res. 34, 301–315 (2023). https://doi.org/10.1007/s11676-022-01496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-022-01496-z

Keywords

Navigation