Skip to main content
Log in

Molecular approach to determine taxonomic status of Septoria sp. causing leaf blotch of Castanea sativa in Hyrcanian forests

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Castanea sativa is a valuable tree species in Hyrcanian forests, an evolutionary relict ecosystem whose communities suffer from overexploitation and fungal diseases. In the current study, three species delimitation methods were utilized with ITS regions sequencing to determine the taxonomic status of Septoria causing leaf blotch of C. sativa in Hyrcanian forests. The results indicated that the length of ITS region in the genus Septoria (extracted from GenBank) varied from 650 to 680 bp. There were almost three times more variable sites in ITS1 than in ITS2. The ITS2 secondary structure of Hyrcanian Septoria community had the highest similarity with Septoria castaneicola, except for some differences in helix II and III. Also, Hyrcanian samples had minimum genetic distances with S. castaneicola and maximum with Septoria quercicola. The maximum parsimony method divided the studied Septoria genus into three distinct clades, mostly located in clade I. Clade II consisted entirely of Septoria aciculosa, while clade III contained S. castaneicola as well as Hyrcanian samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrinbana M, Mozafari J, Shams-bakhsh M, Mehrabi R (2012) Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica 186:75–90

    Article  Google Scholar 

  • Azimi H, Abbasi M, Osipyan LL, Javadi-Estahbanati AR (2012) Introducing some new species of Septoria for the Iranian mycobiota. Iran J Plant Pathol 47:341–351

    Google Scholar 

  • Bissegger M, Sieber TN (1994) Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia 86:648–655

    Article  Google Scholar 

  • Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B 360:1889–1895

    Article  CAS  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ (2004) Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Stud Mycol 50:457–469

    Google Scholar 

  • Dalvand M, Roohparvar R (2013) Evaluation of Iranian wheat cultivars reaction to Septoria tritici blotch and virulence survey of Mycosphaerella graminicola in Khuzestan province. Int Res J Appl Basic Sci 5:1097–1100

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ellis MB, Ellis JP (1985) Microfungi on land plants: an identification handbook. Croom Helm, New York

    Google Scholar 

  • Eyal Z (1999) The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105:629–641

    Article  Google Scholar 

  • Fatehi J, Hedjaroud GA, Ershad D (1993) Study on the genus Septoria in Iran. Iran J Plant Pathol 29:53–75 (In Persian with English abstract)

    Google Scholar 

  • Feau N, Bernier L (2004) First report of shining willow as a host plant for Septoria musiva. Plant Dis 88:770–770

    Article  Google Scholar 

  • Feau N, Hamelin RC, Bernier L (2006) Attributes and congruence of three molecular data sets: inferring phylogenies among Septoria-related species from woody perennial plants. Mol Phylogenet Evol 40:808–829

    Article  CAS  PubMed  Google Scholar 

  • Feau N, Hamelin RC, Bernier L (2007) Variability of nuclear SSU-rDNA group introns within Septoria species: incongruence with host sequence phylogenies. J Mol Evol 64:489–499

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fernández-López J, Alía R (2003) Technical guidelines for genetic conservation and use for chestnut (Castanea sativa). International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Ghaneie A, Mehrabi R, Safaie N, Abrinbana M, Saidi A, Aghaee M (2012) Genetic variation for resistance to Septoria tritici blotch in Iranian tetraploid wheat landraces. Eur J Plant Pathol 132:191–202

    Article  Google Scholar 

  • Gottschling M, Plötner J (2004) Secondary structure models of the nuclear internal transcribed spacer regions and 5.8 S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Res 32:307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6:e19254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini SM, Kartoolinejad D, Mirnia SK, Tabibzadeh Z, Akbarinia M, Shayanmehr F (2008) The European mistletoe effects on leaves and nutritional elements of two host species in Hyrcanian forests. Silva Lusitana 16:229–237

    Google Scholar 

  • Hüseyin E, Selçuk F (2014) Coelomycetous fungi in several forest ecosystems of Black Sea provinces of Turkey. Agric For 60:19–32

    Google Scholar 

  • Jamali S (2015) First report of Septoria silybi associated with leaf blotch of Silybum marianum from Iran. Plant Sci Today 2:21–23

    Article  Google Scholar 

  • Johnson GP (1988) Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arbor 69:25–49

    Google Scholar 

  • Karel GA (1958) A preliminary list of plant diseases in Turkey. Ayyıldız Matbaası, Ankara, 44 pp

  • Karimi Farsad L, Mardi M, Ebrahimi MA (2013) Quantitative expression analysis of candidate genes for Septoria tritici blotch resistance in wheat (Triticum aestivum L.). Prog Biol Sci 3:72–78

    Google Scholar 

  • Kartoolinejad D, Hosseini SM, Mirnia SK, Akbarinia M, Shayanmehr F (2007) The relationship among infection intensity of Viscum album with some ecological parameters of host trees. Int J Environ Res 1:143–149

    Google Scholar 

  • Ketenoglu O, Tug GN, Bingol U, Geven F, Kurt L, Guney K (2010) Synopsis of syntaxonomy of Turkish forests. J Environ Biol 31:71–80

    CAS  PubMed  Google Scholar 

  • Khodaparast SA, Salimi M, Ahmadi SB, Mehri Z (2008) Eight new or less known mitosporic fungi for Iran mycoflora from Guilan Province (N. Iran). Rostaniha 9:89–99

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • King JE, Cook RJ, Melville SC (1983) A review of Septoria diseases of wheat and barley. Ann Appl Biol 103:345–373

    Article  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Provan J, Gao LM, Li DZ (2012) Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. Int J Mol Sci 13:8740–8751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnus P (1899) Fungi, Pars II. J. Bornmüller. Iter Persico-turcicum 1892/93. Verh Zool Bot Ges Wien 49:87–103

    Google Scholar 

  • Mattioni C, Martin MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100:951–961

    Article  PubMed  Google Scholar 

  • McDonald BA, McDermott JM, Goodwin SB, Allard RW (1989) The population biology of host-pathogen interactions. Annu Rev Phytopathol 27:77–94

    Article  Google Scholar 

  • Mojerlou S, Safaie N, Alizadeh A, Khelghatibana F (2009) Measuring and modeling crop loss of wheat caused by Septoria leaf blotch in seven cultivars and lines in Iran. J Plant Prot Res 49:257–262

    Article  Google Scholar 

  • Quaedvlieg W, Verkley GJM, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Stud Mycol 75:307–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roane MK, Griffin GJ, Elkins JR (1986) Chestnut blight, other Endothia diseases, and the genus Endothia. The American Phytopathological Society, Philadelphia

    Google Scholar 

  • Seifbarghi S, Razavi M, Aminian H, Zare R, Etebarian H (2010) Studies on the host range of Septoria species on cereals and some wild grasses in Iran. Phytopathol Mediterr 48:422–429

    Google Scholar 

  • Selçuk F, Erdoğdu M, Akgül H, Hüseyin E (2009) The genus Septoria Sacc. in Turkey. Mycopath 7:21–28

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Verkley GJM, Starink-Willemse M (2004) A phylogenetic study of some Septoria species pathogenic to Asteraceae based on ITS ribosomal DNA sequences. Mycol Prog 3:315–323

    Article  Google Scholar 

  • Verkley GJM, Starink-Willemse M, van Iperen A, Abeln EC (2004) Phylogenetic analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear ribosomal DNA. Mycologia 96:558–571

    Article  CAS  PubMed  Google Scholar 

  • Verkley GJM, Quaedvlieg W, Shin HD, Crous PW (2013) A new approach to species delimitation in Septoria. Stud Mycol 75:213–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322

    Google Scholar 

  • Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T (2005) Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11:1616–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefzadeh H, Colagar AH, Tabari M, Sattarian A, Assadi M (2012) Utility of ITS region sequence and structure for molecular identification of Tilia species from Hyrcanian forests. Iran Plant Syst Evol 298:947–961

    Article  Google Scholar 

  • Yousefzadeh H, Colagar AH, Akbarzadeh F, Tippery NP (2014) Taxonomic status and genetic differentiation of Hyrcanian Castanea based on noncoding chloroplast DNA sequences data. Tree Genet Genomes 10:1611–1629

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the Tarbiat Modares University for this research and are grateful to Fatemeh Akbarzadeh for her kind support in providing the molecular data of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Kartoolinejad.

Additional information

Project funding: This research was financially supported by Tarbiat Modares University.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefzadeh, H., Saidi, A., Tayebi, S. et al. Molecular approach to determine taxonomic status of Septoria sp. causing leaf blotch of Castanea sativa in Hyrcanian forests. J. For. Res. 28, 661–670 (2017). https://doi.org/10.1007/s11676-016-0363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0363-6

Keywords

Navigation