Skip to main content
Log in

Effects of Annealing and Oxidation on the Microstructure of Hot-Dipped Aluminum–Silicon Coating of 316L Stainless Steel

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this study, a continuous and dense FeAl/Al2O3 gradient coating was prepared on the surface of 316L stainless steel by hot-dipping aluminizing, vacuum annealing and low-oxygen pressure oxidation. The results showed that when a hot-dipping pure aluminum was applied, the alloy compound layer was composed of (Fe, Cr, Ni)2Al5 and (Fe, Cr, Ni)Al3 phases. When the Si content in the bath was higher than 2.5 wt.%, a new intermetallic compound, Al7(Fe, Cr)2Si, appeared at the interface, and the thickness of the metal compound layer decreased continuously upon increasing the silicon content in the melt pool. When the hot-dipped sample was annealed in vacuum at 900 °C for 3 h, the brittle (Fe, Cr, Ni)2Al5 phase was transformed into a ductile (Fe, Cr, Ni)Al phase. As low-oxygen pressure oxidation progressed, FeAl/Al2O3 gradient coatings were formed on the surface layer. The oxide film formed by the Al-2.5 Si wt.% sample was flatter and denser, which significantly improved its high-temperature oxidation resistance. Reducing the oxygen partial pressure promoted the external oxidation of Al element and the formation of Al2O3 oxide film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Huang, H. Xie, L.M. Luo, X. Zan, D.G. Liu, and Y.C. Wu, Preparation and Properties of FeAl/Al2O3 Composite Tritium Permeation Barrier Coating on Surface of 316L Stainless Steel, Surf. Coat. Technol., 2020, 383, 125282. https://doi.org/10.1016/j.surfcoat.2019.125282

    Article  Google Scholar 

  2. X. Hu, T.G. Lach, and K.A. Terrani, Deuterium Permeation and Retention in 316L Stainless Steel Manufactured by Laser Powder Bed Fusion, J. Nucl. Mater., 2021, 548, 152871. https://doi.org/10.1016/j.jnucmat.2021.152871

    Article  Google Scholar 

  3. J. Lin, F. Chen, F. Liu, D. Xu, J. Gao, and X. Tang, Hydrogen Permeation Behavior and Hydrogen-Induced Defects in 316L Stainless Steels Manufactured by Additive Manufacturing, Mater. Chem. Phys., 2020, 250, 123038. https://doi.org/10.1016/j.matchemphys.2020.123038

    Article  Google Scholar 

  4. M. Moshref-Javadi, H. Edris, A. Shafyei, H. Salimi-Jazi, and E. Abdolvand, Evaluation of Hydrogen Permeation Through Standalone Thermally Sprayed Coatings of AISI 316L Stainless Steel, Int. J. Hydrogen. Energ., 2018, 43(9), p 4657-4670. https://doi.org/10.1016/j.ijhydene.2018.01.021

    Article  Google Scholar 

  5. Y. Wu, S. Wang, S. Li, D. He, X. Liu, L. Jiang, and H. Huang, Deuterium Permeation Properties of Er2O3/Cr2O3 Composite Coating Prepared by MOCVD on 316L Stainless Steel, Fusion Eng. Des., 2016, 113, p 205-210. https://doi.org/10.1016/j.fusengdes.2016.09.007

    Article  Google Scholar 

  6. S.P. Sah, E. Tada, and A. Nishikata, Enhancing Corrosion Resistance of Type 310S Stainless Steelin Carbonate melt by hot-dip Aluminizing, J. Electrochem. Soc., 2018, 165(7), p C403-C411. https://doi.org/10.1149/2.1241807jes

    Article  Google Scholar 

  7. S. Sharafi, and M.R. Farhang, Effect of Aluminizing on Surface Microstructure of an HH309 Stainless Steel, Surf. Coat. Technol., 2006, 200(16–17), p 5048-5051. https://doi.org/10.1016/j.surfcoat.2005.05.024

    Article  Google Scholar 

  8. H. Barekatain, and S.M. Mousavi Khoei, High-Temperature Oxidation Behaviors of Plasma Electrolytic Oxidation Coating on Hot-Dip Aluminized HP40Nb Alloy, Surf. Coat. Technol., 2020, 384, p 125339. https://doi.org/10.1016/j.surfcoat.2020.125339

    Article  Google Scholar 

  9. G.Q. Zhang, S.S. Zhang, R.B. Song, and C.H. Cai, Effect of Mg and Si Contents on Hot-Dip 55Al-Zn Plating: Experimental and Molecular Dynamics Simulation, Mater. Today Commun., 2023, 35, 106131. https://doi.org/10.1016/j.mtcomm.2023.106131

    Article  Google Scholar 

  10. Z. Zhan, Z. Liu, J. Liu, L. Li, Z. Li, and P. Liao, Microstructure and High-Temperature Corrosion behaviors of Aluminide Coatings by low-Temperature Pack Aluminizing Process, Appl. Surf. Sci., 2010, 256(12), p 3874-3879. https://doi.org/10.1016/j.apsusc.2010.01.043

    Article  ADS  Google Scholar 

  11. J. Huang, J. Lu, X. Zhang, Z. Yang, Y. Zhou, Z. Yang, Y. Dang, and Y. Yuan, Preparation and Characterization of Slurry Aluminide Coating on TP347HFG Stainless Steel, Metall. Mater. Trans. A, 2019, 50, p 3776-3784. https://doi.org/10.1007/s11661-019-05296-9

    Article  Google Scholar 

  12. A. Anastassiou, C. Christoglou, and G.N. Angelopoulos, Formation of Aluminide Coatings on Ni and Austenitic 316 Stainless Steel by a Low Temperature FBCVD Process, Surf. Coat. Technol., 2010, 204(14), p 2240-2245. https://doi.org/10.1016/j.surfcoat.2009.12.018

    Article  Google Scholar 

  13. F.J. Pérez, M.P. Hierro, J.A. Trilleros, M.C. Carpintero, L. Sánchez, J.M. Brossard, and F.J. Bolívar, Ironaluminide Coatings on Ferritic Steels by CVD-FBR Technology, Intermetallics, 2006, 14(7), p 811-817. https://doi.org/10.1016/j.intermet.2005.12.010

    Article  Google Scholar 

  14. C.F. Kuang, Z.W. Zheng, M.L. Wang, Q. Xu, and S.G. Zhang, Effect of Hot-Dip Galvanizing Processes on the Microstructure and Mechanical Properties of 600-MPa Hot-Dip Galvanized Dual-Phase Steel, Int. J. Min. Met. Mater., 2017, 24, p 1379-1383. https://doi.org/10.1007/s12613-017-1530-2

    Article  Google Scholar 

  15. Y. Li, Y. Liu, and J. Yang, First Principle Calculations and Mechanical Properties of the Intermetallic Compounds in a Laser Welded Steel/Aluminum Joint, Opt. Laser Technol., 2020, 122, 105875. https://doi.org/10.1016/j.optlastec.2019.105875

    Article  Google Scholar 

  16. G. Xu, K. Wang, X. Yang, H. Wang, Q. Ding, and J. Wen, Review on Corrosion Resistance of Mild Steels in Liquid Aluminum, J. Mater. Sci. Technol., 2021, 71, p 12-22. https://doi.org/10.1016/j.jmst.2020.08.052

    Article  Google Scholar 

  17. X. Chen, Q. Huang, Z. Yan, Y. Song, S. Liu, and Z. Jiang, Preliminary Study of HDA Coating on CLAM Steel Followed by High Temperature Oxidation, J. Nucl. Mater., 2013, 442(1–3), p S597-S602. https://doi.org/10.1016/j.jnucmat.2013.03.011

    Article  ADS  Google Scholar 

  18. H. Azimaee, M. Sarfaraz, M. Mirjalili, and K. Aminian, Effect of Silicon and Manganese on the Kinetics and Morphology of the Intermetallic Layer Growth During Hot-Dip Aluminizing, Surf. Coat. Technol., 2019, 357, p 483-496. https://doi.org/10.1016/j.surfcoat.2018.10.035

    Article  Google Scholar 

  19. H. Wang, S. Sun, X. Li, J. Wang, and X. Su, Effect of Silicon on Interfacial Reaction Andmorphology of Hot-Dip Aluminizing, J. Mater. Res. Technol., 2022, 20, p 3723-3734. https://doi.org/10.1016/j.jmrt.2022.08.095

    Article  Google Scholar 

  20. J.L. Song, S.B. Lin, C.L. Yang, and C.L. Fan, Effects of Si Additions on Intermetallic Compound Layer of Aluminum Steel TIG Welding–Brazing Joint, J. Alloys Compd., 2009, 488(1), p 217-222. https://doi.org/10.1016/j.jallcom.2009.08.084

    Article  Google Scholar 

  21. W.J. Cheng, and C.J. Wang, Effect of Silicon on the Formation of Intermetallic Phases in Aluminide Coating on Mild Steel, Intermetallics, 2011, 19(10), p 1455–1460. https://doi.org/10.1016/j.intermet.2011.05.013

    Article  Google Scholar 

  22. T. Bergh, S.M. Arbo, A.B. Hagen, J. Blindheim, J. Friis, M.Z. Khalid, I.G. Ringdalen, R. Holmestad, I. Westermann, and P.E. Vullum, On Intermetallic Phases Formed During Interdiffusion Between Aluminium Alloys and Stainless Steel, Intermetallics, 2022, 142, 107443. https://doi.org/10.1016/j.intermet.2021.107443

    Article  Google Scholar 

  23. J. Zang, P. Song, J. Feng, X. Xiong, R. Chen, G. Liu, and J. Lu, Oxidation Behaviour of the Nickel-Based Superalloy DZ125 Hot-Dipped with Al Coatings Doped by Si, Corros. Sci., 2016, 112, p 170-179. https://doi.org/10.1016/j.corsci.2016.07.020

    Article  Google Scholar 

  24. Y.Y. Chang, W.J. Cheng, and C.J. Wang, Growth and Surface Morphology of Hot-Dip Al–Si on 9Cr-1Mo Steel, Mater Charact, 2009, 60(2), p 144-149. https://doi.org/10.1016/j.matchar.2008.08.003

    Article  Google Scholar 

  25. F.C. Yin, M.X. Zhao, Y.X. Liu, W. Han, and Z. Li, Effect of Si on Growth Kinetics of Intermetallic Compounds During Reaction Between Solid iron and Molten Aluminum, Trans. Nonferrous Met. Soc. China, 2013, 23(2), p 556-561.

    Article  Google Scholar 

  26. B. Lemmens, H. Springer, I. De Graeve, J. De Strycker, D. Raabe, and K. Verbeken, Effect of Silicon on the Microstructure and Growth Kinetics of Intermetallic Phases Formed During hot-Dip Aluminizing of Ferritic Steel, Surf. Coat. Technol., 2017, 319, p 104-109. https://doi.org/10.1016/j.surfcoat.2017.03.040

    Article  Google Scholar 

  27. M. Hasegawa. Chapter 3.3-Ellingham diagram, Treatise Process Metall, (Elsevier, 2014) 507-516. https://doi.org/10.1016/B978-0-08-096986-2.00032-1.

  28. K. Kruska, D.K. Schreiber, M.J. Olszta, B.J. Riley, and S.M. Bruemmer, Temperature-Dependent Selective Oxidation Processes for Ni-5Cr and Ni-4Al, Corros. Sci., 2018, 139, p 309-318. https://doi.org/10.1016/j.corsci.2018.04.037

    Article  Google Scholar 

  29. L. Latu-Romain, S. Mathieu, M. Vilasi, G. Renou, S. Coindeau, A. Galerie, and Y. Wouters, The Role of Oxygen Partial Pressure on the Nature of the Oxide Scale on a NiCr Model Alloy, Oxid. Met., 2016, 88, p 481-493. https://doi.org/10.1007/s11085-016-9670-8

    Article  Google Scholar 

  30. A. Van Alboom, B. Lemmens, B. Breitbach, E. De Grave, S. Cottenier, and K. Verbeken, Multi-Method Identification and Characterization of the Intermetallic Surface Layers of Hot-Dip Al-Coated Steel: FeAl3 or Fe4Al13 and Fe2Al5 or Fe2Al5+x, Surf. Coat. Technol., 2017, 324, p 419-428. https://doi.org/10.1016/j.surfcoat.2017.05.091

    Article  Google Scholar 

  31. D. Shin, J.Y. Lee, H. Heo, and C.Y. Kang, Formation Procedure of Reaction Phases in Al Hot Dipping Process of Steel, Metals, 2018, 8(10), p 820. https://doi.org/10.3390/met8100820

    Article  Google Scholar 

  32. F. Zarei, H. Nuranian, and K. Shirvani, Effect of Si Addition on the Microstructure and Oxidation Behaviour of Formed Aluminide Coating on HH309 Steel by Cast-Aluminizing, Surf. Coat. Technol., 2020, 394, 125901. https://doi.org/10.1016/j.surfcoat.2020.125901

    Article  Google Scholar 

  33. Y. Du, J.C. Schuster, Z.K. Liu, R. Hu, P. Nash, W. Sun, W. Zhang, J. Wang, L. Zhang, C. Tang, Z. Zhu, S. Liu, Y. Ouyang, W. Zhang, and N. Krendelsberger, A thermodynamic Description of the Al-Fe-Si System Over the Whole Composition and Temperature Ranges via a Hybrid Approach of CALPHAD and key Experiments, Intermetallics, 2008, 16(4), p 554-570. https://doi.org/10.1016/j.intermet.2008.01.003

    Article  Google Scholar 

  34. V.G. Shmorgun, A.I. Bogdanov, V.P. Kulevich, L.D. Iskhakova, and A.O. Taube, Microstructureand Phase Composition of Diffusion Coating Formed in NiCr Alloys by Hot-Dip Aluminizing, Surf. Interfaces., 2021, 23, 100988. https://doi.org/10.1016/j.surfin.2021.100988

    Article  Google Scholar 

  35. Y. Wang, N. Deng, Z.J. Zhou, and Z.F. Tong, Influence of Heating Temperature and Holding time on the Formation sequence of Iron Aluminides at the Interface of Fe/Al Coatings, Mater. Today Commun., 2021, 28, 102516. https://doi.org/10.1016/j.mtcomm.2021.102516

    Article  Google Scholar 

  36. X. Li, A. Scherf, M. Heilmaier, and F. Stein, The Al-Rich Part of the Fe-Al Phase Diagram, J. Phase. Equilib. Diff., 2016, 37, p 162-173. https://doi.org/10.1007/s11669-015-0446-7

    Article  Google Scholar 

  37. F. Zarei, H. Nuranian, and K. Shirvani, Characterization. Growth Kinetics and High-Temperature Oxidation Behavior of Aluminide Coating Formed on HH309 Stainless Steel by Casting and Subsequent Heat Treatment, Intermetallics, 2020, 120, p 106742. https://doi.org/10.1016/j.intermet.2020.106742

    Article  Google Scholar 

  38. P. Huilgol, K.R. Udupa, and K.U. Bhat, Microstructural Investigations on the Hot-Dip Aluminized AISI 321 Stainless Steel after Diffusion Treatment, Surf. Coat. Technol., 2019, 375, p 544-553. https://doi.org/10.1016/j.surfcoat.2019.07.031

    Article  Google Scholar 

  39. H.M. Wang, and G. Duan, Wear and Corrosion Behavior of Laser Clad Cr3Si Reinforced Intermetallic Composite Coatings, Intermetallics, 2003, 11(8), p 755-762. https://doi.org/10.1016/S0966-9795(03)00078-5

    Article  Google Scholar 

  40. G. Duan, and H.M. Wang, Microstructure of Laser Melted/Rapidly Solidified γ/Cr3Si Metal Silicide “In Situ” Composites, J. Mater. Sci., 2002, 37, p 1981-1985. https://doi.org/10.1023/A:1015295014177

    Article  ADS  Google Scholar 

  41. A. Bahadur, and O.N. Mohanty, Structural Studies of Hot Dip Aluminized Coatings on Mild Steel, Mater. T. Jim., 1991, 32(11), p 1053-1061.

    Article  Google Scholar 

  42. S. Kobayashi, and T. Yakou, Control of Intermetallic Compound Layers at Interface Between Steel and Aluminum by Diffusion-Treatment, Mat. Sci. Eng. A-Struct., 2002, 338(1), p 44-53. https://doi.org/10.1016/S0921-5093(02)00053-9

    Article  Google Scholar 

  43. N. Israelsson, J. Engkvist, K. Hellstrom, M. Halvarsson, J.E. Svensson, and L.G. Johansson, KCl-Induced Corrosion of an FeCrAl Alloy at 600 °C in O2+ H2O Environment: The Effect of Pre-Oxidation, Oxid. Met., 2015, 83(1–2), p 29-53. https://doi.org/10.1007/s11085-014-9507-2

    Article  Google Scholar 

  44. X.W. Fang, Y. Wang, Y. Zhang, S.J. Feng, J.Y. Du, D.W. Liu, T.T. Ouyang, J.P. Suo, and S.Z. Cai, Improving the Corrosion Resistance of Fe-21Cr-9Mn Alloy in Liquid Zinc by Heat Treatment, Corros. Sci., 2016, 111, p 362-369. https://doi.org/10.1016/j.corsci.2016.05.018

    Article  Google Scholar 

  45. E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson, and L. Vitos, High Temperature Oxidation of Fe-Al and Fe-Cr-Al alloys: The Role of Cr as a Chemically Active Element, Corros. Sci., 2010, 52, p 394-3404. https://doi.org/10.1016/j.corsci.2010.06.019

    Article  Google Scholar 

  46. J. Shen, S. Liu, X.H. Guo, and Y. Niu, Simultaneous Oxidation and Carburization of a Fe-9Cr Alloy Under Different Oxygen Pressures at 800 °C, Corros. Sci., 2017, 129, p 1-15. https://doi.org/10.1016/j.corsci.2017.09.021

    Article  ADS  Google Scholar 

  47. P. Jang, and S.C. Shin, Formation of Particulate Fe-Al Films by Selective Oxidation of Aluminum, Met. Mater. Int., 2013, 19(5), p 1163-1166. https://doi.org/10.1007/s12540-013-5036-9

    Article  Google Scholar 

  48. L. Mikkelsen, and S. Linderoth, High Temperature Oxidation of Fe-Cr Alloy in O2–H2–H2O Atmospheres; Microstructure and Kinetics, Mater. Sci. Eng., 2003, 361(1), p 198-212. https://doi.org/10.1016/S0921-5093(03)00527-6

    Article  Google Scholar 

  49. X. Zhang, C.C. Silva, C. Liu, M. Prabhakar, and M. Rohwerder, Selective Oxidation of Ternary FeMn-Si Alloys During Annealing Process, Corros. Sci., 2020, 174, p 108859. https://doi.org/10.1016/j.corsci.2020.108859

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude for financial supports from the National Nature Science Foundation of China (Grant Nos. 52171003 and 52271005) and the Jiangsu Provincial Higher Education Key Discipline Construction Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Liu or Xuping Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Deng, X., Guo, Z. et al. Effects of Annealing and Oxidation on the Microstructure of Hot-Dipped Aluminum–Silicon Coating of 316L Stainless Steel. J. Phase Equilib. Diffus. 45, 114–131 (2024). https://doi.org/10.1007/s11669-024-01092-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-024-01092-0

Keywords

Navigation