Skip to main content

Advertisement

Log in

Experimental Determination of the Activities of Liquid Bi-Sn Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The paper addresses the measurement of the partial molar Gibbs energy (\(\Delta {\stackrel{-}{G}}_{Bi},\Delta {\stackrel{-}{G}}_{Sn}\)), thermodynamic activity (\({a}_{Bi},{a}_{Sn}\)) and the activity coefficient (\({\gamma }_{Bi ,}{\gamma }_{Sn}\)) of the Bi-Sn binary system at 600 and 903 K. The experiments were carried out in an H-shaped electrochemical cell based on the measurement of electromotive force with the reversible electrode–solid electrolyte. The measuring electrode was made of Bix-Sn1−x alloys with x ranging from 0.1 to 0.9, step 0.1. The reference electrode was manufactured from pure bismuth, while the electrolyte was a mixture of 17% moles KCl and 83% moles SnCl2 (selected because it contains free ions Sn and the melting temperature of the electrolyte (563 K). To obtain reliable experimental data, each measurement was repeated five times and the standard deviation/error was calculated. Based on error propagation law, the mathematical expression of the compound uncertainty for each quantity addressed in the paper was derived. An innovative derivation is presented for the compound uncertainty (uc) of γSn. The values of the \(\Delta {\stackrel{-}{G}}_{Bi},\Delta {\stackrel{-}{G}}_{Sn}\), aBi, aSn, γBi and γSn are accompanied by their expanded uncertainty having a 95% confidence level. The novelties addressed in the paper are the values of ΔGBi, ΔGSn, aBi, aSn, γBi and γSn in the Bi-Sn binary system at 600 and 903 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. A. Roshanghias, A. Yakymovych, J. Bernardi, and H. Ipser, Synthesis and Thermal Behavior of Tin-Based Alloy (Sn-Ag-Cu) Nanoparticles, Nanoscale, 2015, 13(7), p 5843–5851

    Article  ADS  Google Scholar 

  2. M. Abtew, and G. Selvaduray, Lead-Free Solders in Microelectronics, Mater. Sci. Eng., 2000, 27, p 95–141

    Article  Google Scholar 

  3. F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, and G. Ennas, Synthesis and Melting Behaviour of Bi, Sn and Sn-Bi Nanostructured Alloy, J. Alloys Compd., 2015, 623, p 7–14

    Article  Google Scholar 

  4. J. Vizdal, M.H. Braga, A. Kroupa, K.W. Richter, D. Soares, L.F. Malheiros, and J. Ferreira, Thermodynamic Assessment of the Bi-Sn-Zn System, Calphad, 2007, 31, p 438–448

    Article  Google Scholar 

  5. L. Wani, A. Ara, and A. Usmani, Lead Toxicity: A Review, Interdiscipl. Toxicol., 2015, 8(2), p 55–64

    Article  Google Scholar 

  6. Eur-Lex-32002L0095, Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Official Journal L 037, (2003) 0019–0023.

  7. S.I. Bogatyrenko, A.A. Minenkov, and A.P. Kryshtal, Supercooling Under Crystallization of Bi-Sn Eutectic Alloy in Contact with Bi, Sn and Amorphous C, Vacuum, 2018, 152, p 1–7

    Article  ADS  Google Scholar 

  8. T.T. Issa, F.N. Jasim, H.J. Mohammed, and Z.K. Abbas, Improvement of the Microstructure of Sn-Bi Lead Free Solder Alloy, AIP Conf. Proc., 2017, 1809(020024), p 1–5

    Google Scholar 

  9. I. Plotog, G. Varzaru, B. Mihailescu, M. Branzei, A. Bibis, I. Cristea, Lead/Lead Free Solder Joints Comparative Shear Tests Function of Working Temperature and Soldering Thermal Profile, IEEE SIITME, (2013) 283–286.

  10. M. Branzei, F. Miculescu, A. Bibis, I. Cristea, I. Plotog, G. Varzaru, B. Mihailescu, Lead/Lead Free Solder Joints Comparative Electrical Tests as Function of Microstructure and Soldering Thermal Profile, IEEE SIITME (2013) 255–258.

  11. Eur-Lex-32011L0065, Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment Text with EEA relevance, Official Journal L 174 (2011) 88–110.

  12. M. Branzei, B. Mihailescu, I. Pencea, Lead/Lead–Free Solder Alloys Shear Tests Correlations with Structure at Different Temperatures IEEE ISSET (2014) 252–255.

  13. A.M. Erer, S. Oguz, Y. Türen, Influence of Bismuth (Bi) Addition on Wetting Characteristics of Sn-3Ag-0.5Cu Solder Alloy on Cu Substrate, Eng. Sci. Technol. Int J. 21 (2018) 1159–1163.

  14. M.I.I. Ramli, M.S.S. Yusof, M.A.A.M. Salleh, R.M. Said, K. Nogita, Influence of Bi Addition on Wettability and Mechanical Properties of Sn-0.7 Cu Solder Alloy, Solid State Phenom. 273 (2018) 27–33.

  15. I. Plotog, G. Dumitru, N.D. Codreanu, A. Vasile, M. Branzei , I. Pencea, M. Tarcolea, Microstructure Comparative Analysis of the Solder Joints Based on SAC/SN100 Soldering Alloy Type Depending on the Cooling Rate, IEEE SIITME (2012) 167–172.

  16. Th. Heckmann, Th. Souvignet, S. Lepeer, and D. Naccache, Low-Temperature Low-Cost 58 Bismuth—42 Tin Alloy Forensic Chip Re-balling and Re-soldering, Digit. Invest., 2016, 19, p 60–68

    Article  Google Scholar 

  17. P. Suksongkarm, S. Rojananan, and S. Rojananan, Using Recycled Bismuth-Tin Solder in Novel Machinable Lead-Free Brass, Mater. Trans., 2017, 58(12), p 1754–1760

    Article  Google Scholar 

  18. O.G. Shpyrko, AYu. Grigoriev, R. Streitel, D. Pontoni, P.S. Pershan, M. Deutsch, B. Ocko, M. Meron, and B. Lin, Atomic-Scale Surface Demixing in a Eutectic Liquid BiSn Alloy, Phys. Rev. Lett., 2005, 95(10), p 1–4

    Article  Google Scholar 

  19. S.H. Chen, C.C. Chen, and C.G. Chao, Novel Morphology and Solidification Behavior of Eutectic Bismuth-Tin (Bi-Sn) Nanowires, J. Alloys Compd., 2009, 481, p 270–273

    Article  Google Scholar 

  20. I. Manasijević, L. Balanović, T.H. Grgurić, D. Minić, and M. Gorgievski, Study of Microstructure and Thermal Properties of the Low Melting Bi-In-Sn Eutectic Alloys, Mat. Res., 2018, 21(6), p 1–8

    Article  Google Scholar 

  21. D.R. Frear, and P.T. Vianco, Intermetallic Growth and Mechanical Behavior of Low and High Melting Temperature Solder Alloys, Metall Mater Trans A, 1994, 25, p 1509–1523

    Article  Google Scholar 

  22. F. Niculescu, D. Marcu, Ş Burciu, M. Buzatu, M.I. Petrescu, N. Şerban, and G. Iacob, Experimental Researches Regarding the Thermodynamic Activities in the Binary Pb-Sb Alloy System, J. Phase Equilib. Diff., 2017, 38(5), p 700–706

    Article  Google Scholar 

  23. F. Niculescu, I. Constantin, M. Buzatu, D.F. Marcu, I. Csaki, The Thermodynamic Properties of the Pb-Sb System, U.P.B. Sci. Bull., Series B 78 (4) (2016), 167–174.

  24. Z. Moser, W. Gasior, and J. Pstrus, Surface Tension Measurements of the Bi-Sn and Sn-Bi-Ag Liquid Alloys, J. Electron. Mater., 2001, 30(9), p 1104–1111

    Article  ADS  Google Scholar 

  25. Z. Guo, W. Yuan, M. Hindler, and A. Mikula, Thermodynamic Properties of Liquid Au-Bi-Sn Alloys, J. Chem. Thermodyn., 2012, 48(6), p 201–206

    Article  Google Scholar 

  26. Z. Guo, M. Hindler, W. Yuan, and A. Mikula, Thermodynamic Properties of Liquid Au–Cu–Sn Alloys Determined From Electromotive Force Measurements, Thermochim. Acta, 2011, 525(1–2), p 183–189

    Article  Google Scholar 

  27. C.A. Popescu, D. Taloi, Thermodynamic Calculations in Liquid Al-Sn Alloys Systems, U.P.B. Sci. Bull., Series B 69 (3) (2007) 77–84.

  28. R. Hultgen, Ed., Selected values of the thermodynamic properties of binary alloys ASM International, Materials Park, OH, 1973

    Google Scholar 

  29. M.A. Imam, J.S. Young, and R.G. Reddy, Determination of Thermodynamic Properties of Si-B Alloys, Metall. Mater. Trans. B, 2019, 50, p 981–990

    Article  Google Scholar 

  30. T. Lichtenstein, J. Gesualdi, Yu. Chen-Ta, and H. Kim, Thermochemical Properties and Phase Transitions of Ba-Sn Alloys from Thermal Characterization and Emf Measurements, J. Alloys Compd., 2019, 811, p 151531

    Article  Google Scholar 

  31. M.A. Imam, and R.G. Reddy, Thermodynamic Properties of Magnesium-Boron Binary Alloys Determined Using Solid-State Electrochemical Measurements, Metall. Mater. Trans. B, 2018, 49, p 3504–3512

    Article  Google Scholar 

  32. G. Kaptay, On the Tendency of Solutions to Tend Toward Ideal Solutions at High Temperatures, Metall. Mater. Trans. A, 2012, 43, p 531–543

    Article  Google Scholar 

  33. R.I. Gayley, E.A. Lynton, and B. Serin, Specific Heats of Tin Alloys and Their Relation to the Superconducting Transition Temperature, Phys. Rev., 1962, 126, p 43–49

    Article  ADS  Google Scholar 

  34. H.O. von Samson-Himmelstjerna, Heat Capacity and Heat of Formation of Molten Alloys, Z. Metallk., 1936, 28, p 197–201

    Google Scholar 

  35. S. Nagasaki, and E. Fujita, A Study of the Phase Diagrams by the Specific Heat Measurements (II), J. Jpn. I. Met., 1952, 16(6), p 317–321

    Article  Google Scholar 

  36. Y. Tiba, T. Matsushima, and K. Ono, Thermodynamics of Fused Bismuth-Tin Alloy and Fused Bismuth-Arsenic Alloy, Bull. Res. Inst. Miner. Dressing Metall., 1964, 20(1), p 41–49

    Google Scholar 

  37. A. Podgornik, and R. Bhargava, Meritve Energetskih Sprememb Pri Tvorbi Zmesnih Kristalov, Rudarsko-Met. Zbornik, 1960, 4, p 357–362

    Google Scholar 

  38. H. Seltz, and F.J. Dunkerley, A Thermodynamic Study of the Tin—Bismuth System, J. Am. Chem. Soc., 1942, 64, p 1392–1395

    Article  Google Scholar 

  39. C. Wagner, and G. Englehardt, Beitrag zur Kenntniss der Thermodynamischen Aktivitaten in binaren Legierungen, Z. Physik. Chem., 1932, 159A, p 241–267

    Article  Google Scholar 

  40. S.A. Cho, R. Camisotti, M.H., Velez, Detailed Assessment of Partial Thermodynamic Quantities of Tin In Molten Bi-Sn Alloys from Electromotive Force Measurements, Metall. Mater. Trans. B, 21B (1990) 87–96.

  41. N. Asryan, and A. Mikula, Thermodynamic Properties of Liquid Bi-Sn Alloys, Int. J. Mater. Res., 2004, 95(3), p 132–135

    Google Scholar 

  42. N. Asryan, and A. Mikula, Thermodynamic Properties of Bi–Sn Melts, Inorg. Mater., 2004, 40, p 386–390

    Article  Google Scholar 

  43. A. Yazawa, and K. Koike, Activity Measurement in Sn-Pb, Sn-Bi, Sn-Tl and Sn-Pb-Bi Alloys at 110 °C, J. Min. Met. Inst. Japan, 1968, 184, p 1593–1596

    Google Scholar 

  44. A. Yazawa, T. Kawashima, and K. Itagaki, Measurements of Heats of Mixing in Molten Alloys with the Adiabatic Calorimeter, J. Japan Inst. Metals, 1968, 32, p 1281–1287

    Article  Google Scholar 

  45. F.E. Witting, F. Huber, The energetics of metallic systems. VII. Heats of Mixing in the Liquid Binary Systems Bismuth-Tin and Bismuth-Lead at 475 Degree, Z. Physik. Chem. Frankfurt, 18 (1958) 330–347.

  46. M. Kawakami, The Heat of Mixing of Metals, Sci. Rep. Tohoku. Imp. Univ., 1927, 16, p 915–935

    Google Scholar 

  47. M.R. Kumar, S. Mohan, and C.K. Behera, Thermodynamic Accessment Experimentally on Bi-Sn System by Calorimeter, Mater. Today Proc., 2018, 5, p 27777–27785

    Article  Google Scholar 

  48. A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, and A. Zemanova, Study of the Advanced Materials for Lead Free Soldering, Journal of Mining and Metallurgy B., 2007, 43, p 113–123

    Article  Google Scholar 

  49. A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vizdal, and A. Zemanova, The Development of the COST 531 Lead-Free Solders Thermodynamic Database (Review), JOM, 2007, 59, p 20–25

    Article  Google Scholar 

  50. P.W. Atkins, and J. de Paula, Physical Chemistry, 7th edn. W.H. Freeman and Co., NY, 2001.

    Google Scholar 

  51. A. Magnus, and M. Mannheimer, The Measurements of the Enthalpy of Mixing of Liquid Metals, Z. Physik. Chem., 1926, 121, p 267–278

    Article  Google Scholar 

  52. ISO/IEC Guide 98-3:2008 (JCGM/WG1/100) Uncertainty of measurement—Part 3: Guide to the expression of uncertainty in measurement (GUM:1995), http://www.iso.org/sites/JCGM/JCGM-introduction.htm (2008).

  53. P.V. Clark, SC-R-65-930, V1, Physical Properties of Fused Salt Mixtures, NSA-19-042460, Sandia Laboratory, Albuquerque, (1965) 10.

  54. P.W. Watkins, Physical Chemistry, 5th edn. W.H. Freeman and Co., NY, 1994.

    Google Scholar 

  55. I. Pencea, Metallurgy—Advances in Materials and Processes, Chapter 6. IntechOpen Limited, London, 2012.

    Google Scholar 

  56. S.L.R. Ellison, A. Williams, Eds., EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement, Third Edition, 2012). http://www.eurachem.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Iacob.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niculescu, E., Iacob, G., Niculescu, F. et al. Experimental Determination of the Activities of Liquid Bi-Sn Alloys. J. Phase Equilib. Diffus. 42, 278–289 (2021). https://doi.org/10.1007/s11669-021-00880-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00880-2

Keywords

Navigation