Skip to main content
Log in

Multiphase Characterization of Phase Equilibria in the Tb-Rich Corner of the Co-Cu-Tb System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In recent years, the grain-boundary diffusion (GBD) and grain-boundary restructuring processes used in manufacturing Nd-Fe-B magnets show promise as procedures that allow one to increase their hysteretic characteristics. The processes are realized by adding various amounts of heavy-rare-earth metals (in the form of hydrides, oxides, intermetallic compounds, etc.) to powder mixtures. The additions decompose or melt during subsequent heat treatment, and their components diffuse into grains and remain within the grain-boundary phase and thus, increase the anisotropy field of the main-magnetic (Nd2Fe14B-based) phase and improve the grain-boundary structure, respectively. In the present study, we consider alloys near the Tb3(Co0.6Cu0.4) composition as such an addition, which is of importance in designing the microstructure of Nd-Fe-B permanent magnets allowing us to economically alloy them with terbium (via GBD) simultaneously making copper and cobalt parts of the magnet composition. The phase equilibria in the Tb-rich corner of the Co-Cu-Tb system near the Tb3(Co0.6Cu0.4) composition, which was found to be multiphase, are assessed based on electron microscopy studies, data from electron microprobe, x-ray diffraction, and differential thermal analyses, and from magnetic measurements. A portion of the isothermal section for compositions Tb-40 at.% Co-50 at.% Cu at 600°C was constructed. The copper solubility in Tb3(Co,Cu) and Tb12(Co,Cu)7, and Co solubility in the Tb(Cu,Co) compound were determined, which are up to 6.5, 14.5, and 10 at.%, respectively. The possibility of hydrogenation of the multiphase composition with the formation of TbHx, and fine Co and Cu powders, which are components for diffusion in manufacturing permanent magnets, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Löewe, C. Brombacher, M. Katter, and O. Gutfleisch, Temperature-Dependent Dy Diffusion Process in Nd-Fe-B Permanent magnets, Acta Mater., 2015, 83, p 248-255

    Article  Google Scholar 

  2. W.Q. Liu, H. Sun, X.F. Yi, X.C. Liu, D.T. Zhang, M. Yue, and J.X. Zhang, Coercivity Enhancement in Nd–Fe–B Sintered Permanent Magnet by Dy Nanoparticles Doping, J. Alloys Compd., 2010, 501, p 67-69

    Article  Google Scholar 

  3. M. Ishimaru, M. Itakura, M. Nishida, M. Nakano, and H. Fukunaga, Microstructure Analysis of High Coercitivity PLD-made Nd-Fe-B Thick-Film Improved by Tb-Coating-Diffusion Treatment, Mater. Trans., 2010, 51, p 1939-1943

    Article  Google Scholar 

  4. L. Liang, T. Man, P. Zhang, J. Jin, and M. Yan, Coercivity Enhancement of NdFeB Sintered Magnets by Low Melting Point Dy32.5Fe62Cu5.5 Alloy Modification, J. Magn. Magn. Mater., 2014, 355, p 131-135

    Article  ADS  Google Scholar 

  5. X. Liu, X. Wang, L. Liang, P. Zhang, J. Jin, J. Zhang, T. Man, and M. Ann, Rapid Coercivity Increment of Nd–Fe–B Sintered Magnets by Dy69Ni31 Grain Boundary Restructuring, J. Magn. Magn. Mater., 2014, 370, p 76-80

    Article  ADS  Google Scholar 

  6. H. Sepehri-Amin, L. Liu, T. Ohkubo, M. Yano, T. Shoji, A. Kato, T. Schrefl, and K. Hono, Microstructure and Temperature Dependent of Coercivity of Hot-Deformed Nd–Fe–B Magnets Diffusion Processed with Pr–Cu Alloy, Acta Mater., 2015, 99, p 297-306

    Article  Google Scholar 

  7. S. Nishio, S. Sugimoto, R. Goto, M. Matsuura, and N. Tezuka, Effect of Cu Addition on the Phase Equilibria in Nd-Fe-B Sintered Magnets, Mater. Trans., 2008, 50(4), p 723-726

    Article  Google Scholar 

  8. S. Nishio, R. Goto, M. Matsuura, N. Tezuka, and S. Sugimoto, Wettability Between Nd2Fe14B and Nd-Rich Phase in Nd-Fe-B Alloy System, J. Jpn. Inst. Met., 2008, 72(12), p 1010-1014

    Article  Google Scholar 

  9. R. Goto, S. Nishio, M. Matsuura, S. Sugimoto, and N. Tezuka, Wettability and Interfacial Microstructure Between Nd2Fe14B and Nd-Rich Phases in Nd–Fe–B Alloys, IEEE Trans. Magn., 2008, 44, p 4232-4234

    Article  ADS  Google Scholar 

  10. X.G. Cui, M. Yan, T.Y. Ma, and L.Q. Yu, Effects of Cu Nanopowders Addition on Magnetic Properties and Corrosion Resistance of Sintered Nd–Fe–B Magnets, Phys. B, 2008, 403, p 4182-4185

    Article  ADS  Google Scholar 

  11. Y.L. Liu, J. Liang, YCh He, Y.F. Li, G.F. Wang, Q. Ma, F. Liu, Y. Zhang, and X.F. Zhang, The Effect of CuAl Addition on the Magnetic Property, Thermal Stability and Corrosion Resistance of the Sintered NdFeB Magnets, AIP Adv., 2018, 8, p 056227

    Article  ADS  Google Scholar 

  12. T.-H. Kim, S.-R. Lee, J.W. Kim, Y.D. Kim, H.-J. Kim, M.-W. Lee, and T.-S. Jang, Optimization of the Post-Sintering Annealing Condition for the High Cu Content Nd-Fe-B Sintered Magnet, J. Appl. Phys., 2014, 115, p 17A770-3

    Google Scholar 

  13. M. Ge Pan, H. Pengyue, Z. Zhu, J. Jiao, and Z. Zhao, Effects of Cobalt Addition on the Coercivity of Sintered NdFeB Magnets Prepared by HD Method, Zhongguo Xitu Xuebao, 2010, 28, p 247-251

    Google Scholar 

  14. H. Zhong, Y. Fu, G. Li, T. Liu, W. Cui, W. Liu, Z. Zhang, and Q. Wang, Enhanced Coercivity Thermal Stability Realized in Nd–Fe–B Thin Films Diffusion-Processed by Nd–Co Alloys, J. Magn. Magn. Mater., 2017, 426, p 550-553

    Article  ADS  Google Scholar 

  15. M.-W. Lee, K.-H. Bae, S.-R. Lee, H.-J. Kim, and T.-S. Jang, Microstructure and Magnetic Properties of NdFeB Sintered Magnets Diffusion-Treated with Cu/Al Mixed DyCo Alloy-Powder, Arch. Metall. Mater., 2017, 62(2B), p 1263-1266

    Article  Google Scholar 

  16. A. Kianvash, R.S. Mottram, and I.R. Harris, Densification of Nd13Fe78NbCoB7-type Sintered Magnet by (Nd, Dy)-Hydride Additions Using a Powder Blending Technique, J. Alloys Compd., 1999, 287, p 206-214

    Article  Google Scholar 

  17. T.-H. Kim, S.-R. Lee, H.-J. Kim, M.-W. Lee, and T.-S. Jang, Magnetic and Microstructural Modification of the Nd–Fe–B Sintered Magnet by Mixed DyF3/DyHx Powder Doping, J. Appl. Phys., 2014, 115(17), p 17A763-3

    Article  Google Scholar 

  18. A. Lukin, N.B. Kolchugina, G.S. Burkhanov, N.E. Klyueva, and K. Skotnicova, Role of Terbium Hydride Additions in the Formation of Microstructure and Magnetic Properties of Sintered Nd-Pr-Dy-Fe-B Magnets, Inorgan Mater. Appl. Res., 2013, 4, p 256-259

    Article  Google Scholar 

  19. G.S. Burkhanov, N.B. Kolchugina, A.A. Lukin, Y.S. Koshkidko, J. Cwik, K. Skotnicova, and V.V. Sitnov, Structure and Magnetic Properties of Nd–Fe–B Magnets Prepared from DyH2-Containing Powder Mixtures, Inorgan Mater Appl Res, 2018, 9(3), p 509-516

    Article  Google Scholar 

  20. G. S. Burkhanov, N. B. Kolchugina, Y. S. Koshkid`ko, J. Cwik, K. Skotnicova, T. Cegan, P. A. Prokof`ev, H. Drulis, A. Hackemer, Structure and Phase Composition of Tb3Co0.6Cu0.4 Alloys for Efficient Additions to Nd-Fe-B Sintered Magnets, METAL 2017 Confernce Proceedings, 24-26 May 2017, Tanger Ltd., Brno, Czech Republiuc, EU, p 1775-1781.

  21. Y. Zhang, T. Ma, X. Liu, P. Liu, J. Jin, J. Zou, and M. Yan, Coercivity Enhancement of Nd-Fe-B Sintered Magnets with Intergranular Adding (Pr, Dy, Cu) − Hx Powders, J. Magn. Magn. Mater., 2016, 399, p 159-163

    Article  ADS  Google Scholar 

  22. N. Kolchugina, T. Dobatkina, Co-Cu-Tb Ternary Phase Diagram Evaluation, In MSI Eureka, Effenberg, G. (Ed.), MSI, Materials Science International, Stuttgart (2017), Document ID: 10.36935.1.4.

  23. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., The Materials Information Society, Materials Park, 1990, p 2

    Google Scholar 

  24. P.R. Subramanian, D.J. Chakrabarti, and D.E. Laughlin, , Phase Diagrams of Binary Copper Alloys, ASM International, Materials Park, 1990, p 1-3

    Google Scholar 

  25. R. Tetean, E. Burzo, and I.G. Deac, Magnetic Properties of Cobalt in TbCo3−xCu x Intermetallic Compounds, J. Alloys Compd., 2007, 442, p 206-208

    Article  Google Scholar 

  26. A. Bezergheanu, R. Grasin, and R. Tetean, Magnetic Properties and Magnetocaloric Effect in Tb8Co16−xCux Compounds, Stud. Univ. Babes-Bolyai Phys., 2011, 56(2), p 39-46

    Google Scholar 

  27. https://materials.springer.com/isp/crystallographic/docs/sd_1008878

  28. https://materials.springer.com/isp/crystallographic/docs/sd_1006008

  29. O.I. Kharchenko, Ternary (Y,Ce)-Co-Cu Systems, Vestn. L’vovskogo Univ., Ser. Khimicheskaya, 1981, 23, p 58–61 (in Russian)

  30. G.G. Devyatykh and G.S. Burkhanov, High-Purity Refractory and Rare-Earth Metals, International Science Publishing, Cambridge, 1997

    Google Scholar 

  31. K.H.J. Buschow and A.S. Van Der Goot, The Crystal Structure of Rare-earth Cobalt Compounds of the Type R3Co, J. Less Common Met., 1969, 18(3), p 309-311

    Article  Google Scholar 

  32. W. Adams, J.-M. Moreau, E. Parthé, and J. Schweizer, R12Co7 Compounds with R = Gd, Tb, Dy, Ho, Er, Acta Cryst., 1976, B32, p 2697-2699

    Article  Google Scholar 

  33. http://www.ccp14.ac.uk/ccp/web-mirrors/powdcell/a_v/v_1/powder/e_cell.html

  34. N.V. Baranov, A.F. Gubkin, A.P. Vokhmyanin, A.N. Pirogov, A. Podlesnyak, L. Keller, N.V. Mushnikov, and M.I. Bartashevich, High-Field Magnetization and Magnetic Structure of Tb3Co, J. Phys. Condens. Matter, 2001, 19, p 326213

    Article  Google Scholar 

  35. M.R. Ibarra, P.A. Algarabel, and A.S. Pavlovic, High-Field Magnetostriction of TbCu, DyCu and HoCu, J. Appl. Phys., 1990, 67, p 4814

    Article  ADS  Google Scholar 

  36. J.Q. Deng, Y.H. Zhuang, J.Q. Li, and J.L. Huang, Magnetic Properties of Tb12Co7, Physica B, 2007, 391(2), p 331-334

    Article  ADS  Google Scholar 

  37. W.C. Koehler, H.R. Child, E.O. Wollan, and J.W. Cable, Some Magnetic Structure Properties of Terbium and of TerbiumYttrium Alloys, J. Appl. Phys., 1963, 34, p 1335

    Article  ADS  Google Scholar 

  38. N.V. Mushnikov, A.Y. Yermakov, N.K. Zajkov, and A.K. Shtolz, Hydrogen-Induced Decomposition in Pr(Co1−xCux)5 Intermetallic Compounds, J. Alloys Compd., 1997, 260, p 12-16

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Bochvar N.R. for the useful discussion of the obtained results and Dr. A. Watson for his assistance in preparing the manuscript. This study was supported financially by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.616.21.0093 (Unique Identification Number RFMEFI61618X0093) and the Ministry of Education, Youth, and Sports of the Czech Republic, Project No. LTARF18031. Structural studies were performed using research infrastructure of the Centre of Collaborative Access for Functional Nanomaterials and High-Purity Substances, Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences and of the Regional Materials Science and Technology Centre, VSB-TU, Ostrava (Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel A. Prokofev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofev, P.A., Kolchugina, N.B., Burkhanov, G.S. et al. Multiphase Characterization of Phase Equilibria in the Tb-Rich Corner of the Co-Cu-Tb System. J. Phase Equilib. Diffus. 40, 403–412 (2019). https://doi.org/10.1007/s11669-019-00735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00735-x

Keywords

Navigation