Skip to main content
Log in

Growth of Phases and Diffusion of Components in the W-Pt System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Growth kinetics, phase boundary compositions, interdiffusion coefficients and the relative mobilities of the components are determined in the W-Pt system. The measured phase boundary compositions for the γ phase are found to be different from the reported phase diagram. The interdiffusion coefficient and the activation energy decrease in the Pt(W) solid solution with increasing W content. An estimation of the parabolic growth constants and average interdiffusion coefficients in the γ phase indicates that the diffusion process should be explained based on the estimation of diffusion parameters, which otherwise could lead to a wrong conclusion. The estimation of the relative mobilities of the components in the γ phase indicates that Pt has a much higher diffusion rate than W. This is explained with the help of the crystal structure and the possible point defects present on different sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Blavette, P. Caron, and T. Khan, An atom Probe Investigation of the Role of Rhenium Additions in Improving Creep Resistance of Ni-Base Superalloys, Scr. Mater., 1986, 20(10), p 1395-1400

    Google Scholar 

  2. A.C. Yeh and S. Tin, Effects of Ru and Re Additions on the High Temperature Flow Stresses of Ni-Base Single Crystal Superalloys, Scr. Mater., 2005, 52(6), p 519-526

    Article  Google Scholar 

  3. C.Y. Geng, C.Y. Wang, and T. Yu, Site Preference and Alloying Effect of Platinum Group Metals in γ′-Ni3Al, Acta Mater., 2004, 52(18), p 5427-5433

    Article  Google Scholar 

  4. R.A. Hobbs, L. Zhang, C.M.F. Rae, and S. Tin, The Effect of Ruthenium on the Intermediate to High Temperature Creep Response of High Refractory Content Single Crystal Nickel-Base Superalloys, Mater. Sci. Eng., 2008, 489(1-2), p 65-76

    Article  Google Scholar 

  5. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker, Evolution of a Diffusion Aluminide Bond Coat for Thermal Barrier Coatings During Thermal Cycling, Acta Mater., 2003, 15(8), p 2205-2217

    Article  Google Scholar 

  6. A.L. Purvis and B.M. Warnes, The effects of Platinum Concentration on the Oxidation Resistance of Superalloys Coated with Single-Phase Platinum Aluminide, Surf. Coat. Technol., 2001, 146-147, p 1-6

    Article  Google Scholar 

  7. B. Gleeson, W. Wang, S. Hayashi, and D. Sordelet, Effects of Platinum on the Interdiffusion and Oxidation Behavior of Ni-Al-Based Alloys, Mater. Sci. Forum, 2004, 461-464(1), p 213-222

    Article  Google Scholar 

  8. M.S. Farrell, D.H. Boone, and R. Streiff, Oxide Adhesion and Growth Characteristics on Platinum-Modified Aluminide Coatings, Surf. Coat. Technol., 1987, 32(1-4), p 69-84

    Article  Google Scholar 

  9. W.J. Quadakkers, V. Shemet, D. Sebold, R. Anton, E. Wessel, and L. Singheiser, Oxidation Characteristics of a Platinized MCrAlY Bond Coat for TBC Systems During Cyclic Oxidation at 1000 °C, Surf. Coat. Technol., 2005, 199(1), p 77-82

    Article  Google Scholar 

  10. R. Lowrie and D.H. Boone, Composite Coatings of CoCrAlY Plus Platinum, Thin Solid Films, 1977, 45(3), p 491-498

    Article  ADS  Google Scholar 

  11. T.A. Taylor and D.F. Bettridge, Development of Alloyed and Dispersion-Strengthened MCrAlY Coatings, Surf. Coat. Technol., 1996, 86-87(1), p 9-14

    Article  Google Scholar 

  12. G.J. Tatlock and T.J. Hurd, Platinum and the Oxidation Behavior of a Nickel Based Superalloy, Oxid. Met., 1984, 22(5-6), p 201-226

    Article  Google Scholar 

  13. G.J. Tatlock, T.J. Hurd, and J.S. Punni, High Temperature Degradation of Nickel Based Alloys, Platinum Met. Rev., 1987, 31(1), p 26-31

    Google Scholar 

  14. D.R. Coupland, C.W. Hall, and I.R. McGill, Platinum Enriched Superalloys, Platinum Met. Rev., 1982, 26(4), p 146-157

    Google Scholar 

  15. D. Wang, J. Zhang, and L.H. Lou, On the Role of μ Phase During High Temperature Creep of a Second Generation Directionally Solidified Superalloy, Mater. Sci. Eng., 2010, 527(20), p 5161-5166

    Article  Google Scholar 

  16. M. Simonetti and P. Caron, Role and Behaviour of μ Phase During Deformation of a Nickel-Based Single Crystal Superalloy, Mater. Sci. Eng., 1998, 254(1-2), p 1-12

    Article  Google Scholar 

  17. R.C. Reed and C.M.F. Rae, The Precipitation of Topologically Close-Packed Phases in Rhenium-Containing Superalloys, Acta Mater., 2001, 49(19), p 4113-4125

    Article  Google Scholar 

  18. J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu, Topologically Close-Packed Phase Precipitation in a Nickel-Base Superalloy During Thermal Exposure, Mater. Sci. Eng., 2007, 465(1-2), p 100-108

    Article  Google Scholar 

  19. K.Y. Cheng, C.Y. Jo, T. Jin, and Z.Q. Hu, Precipitation Behavior of μ Phase and Creep Rupture in Single Crystal Superalloy CMSX-4, J. Alloys Compd., 2011, 509(25), p 7078-7086

    Article  Google Scholar 

  20. C.M.F. Rae, M.S. Hook, and R.C. Reed, The Effect of TCP Morphology on the Development of Aluminide Coated Superalloys, Mater. Sci. Eng., 2005, 396(1-2), p 231-239

    Article  Google Scholar 

  21. Y.H. Zhang, D.M. Knowles, and P.J. Withers, Microstructural Development in Pt-Aluminide Coating on CMSX - 4 Superalloy During TMF, Surf. Coat. Technol., 1998, 107(1), p 76-83

    Article  Google Scholar 

  22. A.A. Kodentsov, G.F. Bastin, and F.J.J. van Loo, The Diffusion Couple Technique in Phase Diagram Determination, J. Alloys Compd., 2001, 320(2), p 207-217

    Article  Google Scholar 

  23. M. Hanse and K. Anderko, The Constitution of Binary Alloys, McGraw Hill Book Co, New York, 1958, p 1146

    Google Scholar 

  24. B. Predel, Pt-W (Platinum-Tungsten) Landolt-Börnstein, Group IV Phys. Chem., 1998, 5I, p 1-2

    Google Scholar 

  25. A.G. Knapton, Alloys of Platinum and Tungsten, Platinum Met. Rev., 1980, 24(2), p 64-69

    Google Scholar 

  26. V.A. Baheti, S. Roy, R. Ravi, and A. Paul, Interdiffusion and the Phase Boundary Compositions in the Co-Ta System, Intermetallics, 2013, 33, p 87-91

    Article  Google Scholar 

  27. S. Santra, A. Mondal, and A. Paul, Interdiffusion in the Fe-Pt System, Metallurg. Mater. Trans., 2012, 43(3), p 791-795

    Article  Google Scholar 

  28. C. Wagner, The Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems, Acta Mater., 1969, 17(2), p 99-107

    Article  ADS  Google Scholar 

  29. H.L. Luo, Superconductivity and Lattice Parameters in Face-Centered Cubic Pt-W and Pd-W Solid Solutions, J. Less. Common Met., 1968, 15(3), p 299-302

    Article  Google Scholar 

  30. H.R. Khan and C.J. Raub, Abnormal Magnetic Susceptibility and Superconductivity of Platinum Tungsten Alloys, Metall (Berlin), 1972, 26(12), p 1221-1223

    Google Scholar 

  31. V.D. Divya, U. Ramamurty, and A. Paul, Topological Close Packed μ Phase Formation and the Determination of Diffusion Parameters in the Co-Mo System, Intermetallics, 2010, 18, p 259-266

    Article  Google Scholar 

  32. S. Santra, H. Dong, T. Laurila, and A. Paul, Role of Different Factors Affecting Interdiffusion in Cu(Ga) and Cu(Si) Solid Solutions, Proc. Roy. Soc. A, 2014. doi:10.1098/rspa.2013.0464

  33. J.E. Reynolds, B.L. Averbach, M. Cohen, and J.E. Hilliard, Self-Diffusion and Interdiffusion in Gold-Nickel Alloys, Acta Metallurg., 1957, 5(1), p 29-40

    Article  Google Scholar 

  34. R. Ravi and A. Paul, Diffusion Mechanism in the Gold-Copper System, J. Mater. Sci.: Mater Electron, 2012, 23(12), p 2152-2156

    Google Scholar 

  35. V.D. Divya, U. Ramamurty, and A. Paul, Interdiffusion and Growth of the Phases in CoNi/Mo and CoNi/W Systems, Metallurg. Mater. Trans., 2012, 43(5), p 1564-1577

    Article  Google Scholar 

  36. S. Roy, S. Divinski, and A. Paul, Reactive Diffusion in the Ti-Si System and the Significance of the Parabolic Growth Constant, Philos. Mag., 2014. doi:10.1080/14786435.2013.859759

  37. F.J.J. Van Loo, Multiphase Diffusion in Binary and Ternary Solid-State Systems, Prog. Solid State Chem., 1990, 20(1), p 47-99

    Article  MathSciNet  Google Scholar 

  38. J.R. Manning, Diffusion and the Kirkendall Shift in Binary Alloys, Acta Mater., 1967, 15(5), p 817-826

    Article  Google Scholar 

  39. N.A. Stolwijk, M. van Gand, and H. Bakker, Self-Diffusion in the Intermetallic Compound CoGa, Philos. Mag. A, 1980, 42(6), p 783-808

    Article  ADS  Google Scholar 

  40. S. Divinski and C. Herzig, On the Six-Jump Cycle Mechanism of Self-Diffusion in NiAl, Intermetallics, 2000, 8(12), p 1357-1368

    Article  Google Scholar 

  41. S.V. Divinski and L.N. Larikov, Diffusion by Anti-Structure Defects in Non-Stoichiometric Intermetallic Compounds with B2 and L12 Structures, J. Phys. Condens. Matter, 1997, 9(37), p 7873-7883

    Article  ADS  Google Scholar 

  42. C.R. Kao and Y.A. Chang, On the Composition Dependencies of Self-Diffusion Coefficients in B2 Intermetallic Compounds, Intermetallics, 1993, 1(4), p 237-250

    Article  Google Scholar 

  43. H. Numakura, T. Ikeda, M. Koiwa, and A. Almazouz, Self-Diffusion Mechanism in Ni-Based L12 Type Intermetallic Compounds, Philos. Mag. A, 1998, 77(4), p 887-909

    Article  ADS  Google Scholar 

  44. A.F. Guillermet, V. Ozoliņ, G. Grimvall, and M. Körling, Phase Stabilities in the Pt-W System: Thermodynamic and Electronic-Structure Calculations, Phys. Rev. B, 1995, 51(16), p 10364-10374

    Article  Google Scholar 

  45. M. Stojković, V. Koteski, J. Belošević-Čavor, B. Cekić, D. Stojić, V. Ivanovski, Structure and Electronic Properties of Mo3Pt, MoPt2, and MoPt3: First-Principles Calculations, Physical Review B, 2008, 77 (19), p 193111

Download references

Acknowledgments

We would like to acknowledge the financial support from ARDB, India in carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloke Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiruthika, P., Paul, A. Growth of Phases and Diffusion of Components in the W-Pt System. J. Phase Equilib. Diffus. 35, 36–42 (2014). https://doi.org/10.1007/s11669-013-0274-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-013-0274-6

Keywords

Navigation