Skip to main content
Log in

Metallurgical Failure Analysis of an Axial Gas Flow Valve: The Erosion of Valve Cage Closures

  • Case History---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This study investigates the premature failure of an axial flow valve used in a gas flow control station. After the first reports of these valves' malfunction exposed to severe gas/solid flow, they were disassembled. It was found that their common issue was the erosion of radial slits of the valve cage closures (VCCs) made of 17-4 PH stainless steel. Metallurgical failure analysis on the eroded slits was performed through spark emission spectroscopy, metallography observations, hardness measurements, and scanning electron microscopy equipped with energy-dispersive spectroscopy. The results presented show that the major microstructure of the slits was martensitic with an average hardness value of 387 HV; however, unlike the common 17-4 PH alloys, the Al content of the VCCs was around 0.25 wt.% which is about 8 times higher than the common ones. The comparison of microstructure, hardness, impact toughness, and erosion rate of the failed VCCs with the standard reference composition 17-4 PH samples revealed that this level of Al content changes the phase balance of 17-4 PH and increases the amount of δ-ferrite from 1.1% to 4.7%. In addition, Al-rich inclusions with sizes less than 5 μm form throughout the microstructure of failed VCCs. These microstructural changes lead to around 50% decrease in the impact toughness and erosion resistance. A meaningful increase in the amounts of Al-rich inclusions and δ-ferrite/martensite interface are discussed as the potential mechanisms of severe erosion of VCCs and consequently malfunction of the axial gas flow valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zheng, M. Luo, K. Xu, X. Li, Q. Bie, Y. Liu, H. Yang, Z. Liu, Case study: Erosion of an axial flow regulating valve in a solid-gas pipe flow. Wear. 434, 202952 (2019)

    Article  Google Scholar 

  2. G. Yeli, M.A. Auger, K. Wilford, G.D.W. Smith, P.A.J. Bagot, M.P. Moody, Sequential nucleation of phases in a 17–4PH steel: microstructural characterisation and mechanical properties. Acta Mater. 125, 38–49 (2017)

    Article  CAS  Google Scholar 

  3. K.S. Raja, K.P. Rao, On the hardness criterion for stress corrosion cracking resistance of 17–4 PH stainless steel. J. Mater. Sci. Lett. 12, 963–966 (1993)

    Article  CAS  Google Scholar 

  4. M. Alnajjar, F. Christien, V. Barnier, C. Bosch, K. Wolski, A.D. Fortes, M. Telling, Influence of microstructure and manganese sulfides on corrosion resistance of selective laser melted 17–4 PH stainless steel in acidic chloride medium. Corros. Sci. 168, 108585 (2020)

    Article  CAS  Google Scholar 

  5. C.N. Hsiao, C.S. Chiou, J.R. Yang, Aging reactions in a 17–4 PH stainless steel. Mater. Chem. Phys. 74, 134–142 (2002)

    Article  CAS  Google Scholar 

  6. W.D. Yoo, J.H. Lee, K.T. Youn, Y.M. Rhyim, Study on the microstructure and mechanical properties of 17–4 PH stainless steel depending on heat treatment and aging time. Solid State Phenom. 118, 15–20 (2006)

    Article  CAS  Google Scholar 

  7. J.R. Davis, Stainless steels. (ASM international, Ohio, 1994)

    Google Scholar 

  8. F. El Hilali, M. Habashi, A. Mohsine, Mechanical behaviour of 17–4 PH martensitic stainless steel in stress corrosion cracking and embrittlement in environmental hydrogen. Annales de chimie-Sciences des materiaux. 3(24), 169–194 (1999)

    Google Scholar 

  9. D. Nakhaie, M.H. Moayed, Pitting corrosion of cold rolled solution treated 17–4 PH stainless steel. Corros. Sci. 80, 290–298 (2014)

    Article  CAS  Google Scholar 

  10. J. Srinath, K.S. Manwatkar, S.V.S.N. Murty, P.R. Narayanan, S.C. Sharma, M.K. George, Metallurgical analysis of a failed 17–4 PH stainless steel pyro bolt used in launch vehicle separation Systems. Mater. Perform. Charact. 4, 29–44 (2015)

    CAS  Google Scholar 

  11. A. Ul-Hamid, L.M. Al-Hadhrami, A.I. Mohammed, F.K. Al-Yousef, Failure analysis of an impeller blade. Mater. Corros. 66, 286–295 (2015)

    Article  CAS  Google Scholar 

  12. T. Jiang, J. Zhong, X. Zhang, W. Wang, K. Guan, Guan, hydrogen embrittlement induced fracture of 17–4 PH stainless steel valve stem. Eng. Fail. Anal. 113, 104576 (2020)

    Article  CAS  Google Scholar 

  13. F. Fantechi, M. Innocenti, Chloride stress corrosion cracking of precipitation hardening SS impellers in centrifugal compressor. Laboratory investigations and corrective actions. Eng. Fail. Anal. 8, 477–492 (2001)

    Article  CAS  Google Scholar 

  14. S.S.M. Tavares, V. Anchieta, E.R.C. Leão, M.R. da Silva, M.C.S. Macêdo, Failure analysis of PSV spring in off shore gas production pipeline. Eng. Fail. Anal. 23, 10–17 (2012)

    Article  CAS  Google Scholar 

  15. C.F. Arisoy, G. Başman, M.K. Şeşen, Failure of a 17–4 PH stainless steel sailboat propeller shaft. Eng. Fail. Anal. 10, 711–717 (2003)

    Article  CAS  Google Scholar 

  16. M.K. Karthikeyan, R.K. Gupta, V. Rajesh, B.R. Ghosh, P.P. Sinha, Microstructural investigation on failure of internal drive shaft. J. Fail. Anal. Prevent. 7, 429–433 (2007)

    Article  Google Scholar 

  17. X.L. Xu, Z.W. Yu, Metallurgical analysis on a bending failed pump-shaft made of 17–7PH precipitation-hardening stainless steel. J. Mater. Process. Tech. 198, 254–259 (2008)

    Article  CAS  Google Scholar 

  18. J. Tian, W. Wang, W. Yan, Z. Jiang, Y. Shan, K. Yang, Cracking due to Cu and Ni segregation in a 17–4 PH stainless steel piston rod. Eng. Fail. Anal. 65, 57–64 (2016)

    Article  CAS  Google Scholar 

  19. G.F. Vander Voort, H. JAMES, Metallography and microstructures, ASM International, OH (2004).

  20. ASTM G76-04, Standard test method for conducting erosion tests by solid particle impingement using gas jets. ASTM International (2004).

  21. Q.B. Nguyen, D.N. Nguyen, R. Murray, N.X. Ca, C.Y.H. Lim, M. Gupta, X.C. Nguyen, The role of abrasive particle size on erosion characteristics of stainless steel. Eng. Fail. Anal. 97, 844–853 (2019)

    Article  CAS  Google Scholar 

  22. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, L. Jiang, Effect of aluminum on microstructure, mechanical properties and pitting corrosion resistance of ultra-pure 429 ferritic stainless steels. Mater. Des. 1980–2015(65), 682–689 (2015)

    Article  Google Scholar 

  23. J.H. Park, Effect of inclusions on the solidification structures of ferritic stainless steel: computational and experimental study of inclusion evolution. Calphad. 35, 455–462 (2011)

    Article  CAS  Google Scholar 

  24. Z. Yu, M. Chen, C. Shen, S. Zhu, F. Wang, Oxidation of an austenitic stainless steel with or without alloyed aluminum in O2+10% H2O environment at 800°C. Corros. Sci. 121, 105–115 (2017)

    Article  CAS  Google Scholar 

  25. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, Y.Y. Li, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A. 527, 3210–3216 (2010)

    Article  Google Scholar 

  26. C.-H. Lee, J.-Y. Park, W.-K. Seol, J. Moon, T.-H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and Charpy impact properties of reduced activation ferritic–martensitic steel with Ti. Fusion Eng. Des. 124, 953–957 (2017)

    Article  CAS  Google Scholar 

  27. D.C. Hill, D.E. Passoja, Understanding the role of inclusions and microstructure in ductile fracture. Weld. J. 53, 481s-s485 (1974)

    Google Scholar 

  28. G. Qiu, D. Zhan, C. Li, Y. Yang, M. Qi, Z. Jiang, H. Zhang, Influence of inclusions on the mechanical properties of RAFM steels via Y and Ti addition. Metals. 9, 851 (2019)

    Article  CAS  Google Scholar 

  29. M.A. Islam, T. Alam, Z.N. Farhat, A. Mohamed, A. Alfantazi, Effect of microstructure on the erosion behavior of carbon steel. Wear. 332, 1080–1089 (2015)

    Article  Google Scholar 

  30. N. Andrews, L. Giourntas, A.M. Galloway, A. Pearson, Effect of impact angle on the slurry erosion-corrosion of Stellite 6 and SS316. Wear. 320, 143–151 (2014)

    Article  CAS  Google Scholar 

  31. G.T. Burstein, K. Sasaki, Effect of impact angle on the slurry erosion–corrosion of 304L stainless steel. Wear. 240, 80–94 (2000)

    Article  CAS  Google Scholar 

  32. B. Taherkhani, A.P. Anaraki, J. Kadkhodapour, N.K. Farahani, H. Tu, Erosion due to solid particle impact on the turbine blade: experiment and simulation. J. Fail. Anal. Prevent. 19, 1739–1744 (2019)

    Article  Google Scholar 

  33. S. Wu, Z. Cai, Y. Lin, Z. Li, M. Zhu, Effect of abrasive particle hardness on interface response and impact wear behavior of TC17 titanium alloy. Mater. Res. Expr. 6, 16521 (2018)

    Article  Google Scholar 

  34. C. Gennari, L. Pezzato, E. Piva, R. Gobbo, I. Calliari, Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 Duplex Stainless Steel. Mater. Sci. Eng. A. 729, 149–156 (2018)

    Article  CAS  Google Scholar 

  35. U.K. Viswanathan, S. Banerjee, R. Krishnan, Effects of aging on the microstructure of 17–4 PH stainless steel. Mater. Sci. Eng. A. 104, 181–189 (1988)

    Article  Google Scholar 

  36. P. Suri, B.P. Smarslok, R.M. German, Impact properties of sintered and wrought 17–4 PH stainless steel. Powder Metall. 49, 40–47 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Pour-Ali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pour-Ali, S., Etminanfar, M. Metallurgical Failure Analysis of an Axial Gas Flow Valve: The Erosion of Valve Cage Closures. J Fail. Anal. and Preven. 21, 1154–1163 (2021). https://doi.org/10.1007/s11668-021-01190-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01190-y

Keywords

Navigation