Skip to main content
Log in

Enhanced Adhesion and Corrosion Protection Properties of Surface Modified Sb2O3–Epoxy Nanocomposite Coatings on Mild Steel

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The effect of introducing Sb2O3 (antimony oxide) nanoparticles in epoxy coatings on mild steel was analyzed by electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) techniques in 3.5% NaCl. In order to disperse the nanoparticles properly and enable the interactions of nanoparticles chemically with epoxy resin, (3-mercaptopropyl)trimethoxysilane (MPTMS) was used to modify the nanoparticle. The charge transfer resistance (Rct) and the film resistance (Rf) were improved by incorporating Sb2O3 nanoparticles in the epoxy coating. The dissolution of iron at the scratch was detected using proper potential at the tip of the SECM in the Sb2O3-incorporated nanocomposite-coated sample. The presence of concentrated Sb was found in the scratched surface and examined by SEM/EDX analysis. FIB–TEM technique confirmed the elements present in the degradation products. The higher anti-corrosion properties of Sb2O3-grafted epoxy coating were achieved because surface modified Sb2O3 nanoparticles interacted chemically with the epoxy resin, which resulted in the deposition of the degradation products in the nano-level at the scratch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.H. Potgieter, P.A. Olubambi, L. Cornish, C.N. Machio, E.S.M. Sherif, Influence of nickel additions on the corrosion behavior of low nitrogen 22% Cr series duplex stainless steels. Corros. Sci. 50, 2572–2579 (2008)

    Article  CAS  Google Scholar 

  2. M.A.M. Ibrahim, S.S.A. El Rehim, M.M. Hamza, Corrosion behavior of some austenitic stainless steels in chloride environments. Mater. Chem. Phys. 115, 80–85 (2009)

    Article  CAS  Google Scholar 

  3. Xiaoyun Ye, Zhaopeng Wang, Lian Ma, Qianting Wang, Anni Chu, Zinc oxide array/polyurethane nanocomposite coating: fabrication, characterization and corrosion resistance. Surf. Coat. Technol. 358, 497–504 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.080

    Article  CAS  Google Scholar 

  4. D.J. Mills, S.S. Jamali, K. Paprocka, Investigation into the effect of nano-silica on the protective properties of polyurethane coatings. Surf. Coat. Technol. 209, 137–142 (2012). https://doi.org/10.1016/j.surfcoat.2012.08.056

    Article  CAS  Google Scholar 

  5. C.G. Oliveira, M.G.S. Ferreira, Ranking high-quality paint systems using EIS. Part 1: intact coatings. Corros. Sci. 45, 123–138 (2003)

    Article  Google Scholar 

  6. F. Galliano, D. Landolt, Evaluation of corrosion protection properties of additives for water borne epoxy coatings on steel. Prog. Org. Coat. 44, 217–225 (2002)

    Article  CAS  Google Scholar 

  7. A. Ghanbari, M.M. Attar, A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. J. Ind. Eng. Chem. 23, 145–153 (2015)

    Article  CAS  Google Scholar 

  8. B. Wetzel, F. Haupert, M.Q. Zhang, Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63, 2055–2067 (2003)

    Article  CAS  Google Scholar 

  9. M. Behzadnasab, S.M. Mirabedini, K. Kabiri, S. Jamali, Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros. Sci. 53, 89–98 (2011)

    Article  CAS  Google Scholar 

  10. M. Schem, T. Schmidt, J. Gerwann, M. Wittmar, M. Veith, G.E. Thompson, I.S. Molchan, T. Hashimoto, P. Skeldon, A.R. Phani, S. Santucci, M.L. Zheludkevich, CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros. Sci. 51, 2304–2315 (2009)

    Article  CAS  Google Scholar 

  11. G. Bierwagen, D. Tallman, J. Li, L. He, C. Jeffcoate, EIS studies of coated metals in accelerated exposure. Prog. Org. Coat. 46, 149–158 (2003)

    Article  Google Scholar 

  12. Jie Liua, Lunwu Zhang, Mu Xianliang, Peiqing Zhang, Studies of electrochemical corrosion of low alloy steel under epoxy coating exposed to natural seawater using the WBE and EIS techniques. Prog. Org. Coat. 111, 315–321 (2017)

    Article  Google Scholar 

  13. J.T. Zhang, J.M. Hu, J.Q. Zhang, C.N. Cao, Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog. Org. Coat. 49, 293–301 (2004)

    Article  CAS  Google Scholar 

  14. W. Zhang, J. Wang, Y.N. Li, W. Wang, Evaluation of metal corrosion under defective coatings by WBE and EIS technique. Acta Phys. Chim. Sin. 26, 2941–2950 (2010)

    Google Scholar 

  15. M.G. Hosseini, P.Y. Sefidi, Electrochemical impedance spectroscopy evaluation on the protective properties of epoxy/DBSAdoped polyaniline-TiO2 nanocomposite coated mild steel under cathodic polarization. Surf. Coat. Technol. 331, 66–76 (2017)

    Article  CAS  Google Scholar 

  16. X. Joseph Raj, T. Nishimura, Evaluation of the corrosion protection performance of epoxy-coated high manganese steel by SECM and EIS techniques. J. Fail. Anal. Prev. 16, 417–426 (2016). https://doi.org/10.1007/s11668-016-0102-5

    Article  Google Scholar 

  17. D. Kong, Y. Wang, W. Zhang, W. Wang, X. Liu, J. Wang, Correlation between electrochemical impedance and current distribution of carbon steel under organic coating. Mater. Corros. 62, 1–6 (2011)

    Google Scholar 

  18. J. Liu, B. Wang, L. Zhu, T.Y. Luo, W. Wang, Correlation between EIS and potential distribution for carbon steel under epoxy coating. Appl. Mech. Mater. 313–314, 249–253 (2013)

    Google Scholar 

  19. J. Liu, W. Wang, J. Wang, Evaluation of the deterioration of epoxy coating by EIS and WBE techniques. Mater. Sci. Tech. 21, 33–39 (2013)

    CAS  Google Scholar 

  20. J.R. Xavier, R. Nallaiyan, Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. J. Fail. Anal. Prev. 16(6), 1082–1091 (2016). https://doi.org/10.1007/s11668-016-0187-x

    Article  Google Scholar 

  21. J.R. Xavier, Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Anti-Corros. Methods Mater. 65(1), 38–45 (2018). https://doi.org/10.1108/ACMM-04-2017-1784

    Article  CAS  Google Scholar 

  22. T. Adachi, W. Araki, T. Nakahara, A. Yamaji, M. Gamou, Fracture toughness of silica particulate-filled epoxy composite. J. Appl. Polym. Sci. 86, 2261–2265 (2002)

    Article  CAS  Google Scholar 

  23. A. Boonyapookana, K. Nagata, Y. Mutoh, Fatigue crack growth behavior of silica particulate reinforced epoxy resin composite. Compos. Sci. Technol. 71, 1124–1131 (2011)

    Article  CAS  Google Scholar 

  24. S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, R. Serra, S.K. Poznyak, M.G.S. Ferreira, Nano porous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Prog. Org. Coat. 58, 127–135 (2007)

    Article  CAS  Google Scholar 

  25. M. Rashvand, Z. Ranjbar, Effect of nano-ZnO particles on the corrosion resistance of polyurethane-based waterborne coatings immersed in sodium chloride solution via EIS technique. Prog. Org. Coat. 76, 1413–1417 (2013)

    Article  CAS  Google Scholar 

  26. J. Izquierdo, J.J. Santana, S. González, R.M. Souto, Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals: the protection of copper surfaces by benzotriazole. Electrochim. Acta 55, 8791–8800 (2010). https://doi.org/10.1016/j.electacta.2010.08.020

    Article  CAS  Google Scholar 

  27. Xiaoqing Xiao, Dongmei Wang, Yongxin Li, Emily Jackson, Yida Fang, Yan Zhang, Ning Xie, Xianming Shi, Investigation into the synergistic effect of nano-sized materials on the anti-corrosion properties of a waterborne epoxy coating. Int. J. Electrochem. Sci. 11, 6023–6042 (2016). https://doi.org/10.20964/2016.07.66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. A. Abudhahir, Prof. Dr. techn.Koteswara Rao Anne, Prof. Dr. P. Sarasu, and the Management of Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai-600 062, Tamil Nadu, India, for their constant encouragement and constructive suggestions regarding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R. Enhanced Adhesion and Corrosion Protection Properties of Surface Modified Sb2O3–Epoxy Nanocomposite Coatings on Mild Steel. J Fail. Anal. and Preven. 20, 523–531 (2020). https://doi.org/10.1007/s11668-020-00847-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00847-4

Keywords

Navigation