Skip to main content
Log in

Contribution to the Improvement of the MADS–MOSAR Method for the Modeling of Domino Effects

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In the literature, many studies have outlined the main existing methods and software tools used for the study and analysis of domino effects. One of these is the MADS–MOSAR model, which provides a schematic representation of the process of domino effects in the form of black boxes. The exploitation of these boxes for the deduction of short and long scenarios is based on the experience of the users of this model. Hence, the difficulty encountered by some practitioners of the model MADS–MOSAR not experienced for the modeling of domino effects. To overcome this difficulty, this paper presents a modeling of black boxes of the MADS–MOSAR model in the form of networks which allow a better exploration of the “Source-Flow-Target” triptych that intervene in the process of domino effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.-P. Lees, Loss Prevention in the Process Industries, vol. 1–2 (Butterworth-Heinemann, Oxford, 1980)

    Google Scholar 

  2. F.-P. Lees, Loss Prevention in the Process Industries, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)

    Google Scholar 

  3. C. Delvosalle, Domino effects phenomena: definition, overview and classification, European seminar on domino effects. in Leuven, Belgium, Federal Ministry of Employment, Safety Administration, Direction Chemical Risks (Brussels, Belgium, 1996), pp. 5–15

  4. D.F. Bagster, R.M. Pitblado, The estimation of domino incident frequencies—an approach. Process Saf. Environ. Prot. 69(4), 195–199 (1991)

    Google Scholar 

  5. J. Gledhill, L. Lines, Development of Methods to Assess the Significance of Domino Effects from Major Hazard Sites, CR Report 183. Health and Safety Executive (1998)

  6. V. Cozzani, E. Salzano, Threshold values for domino effects caused by blast wave interaction with process equipment. J. Loss Prev. Process Ind. 17(6), 437–447 (2004)

    Article  Google Scholar 

  7. F. Kadri, E. Châtelet, Domino effect analysis and assessment of industrial sites: a review of methodologies and software tools. J. Comput. Distrib. Syst. 2(3), 1–10 (2013)

    Google Scholar 

  8. M. Smaiah, L. Bahmed, For an environmental risk management approach applied in Algerian ports: the case of Bethioua port (Algeria). J. Environ. Eng. 8(1), 1–12 (2017)

    Google Scholar 

  9. N.A. Leveson, New accident model for engineering safer systems. J. Saf. Sci. 42(4), 237–270 (2004)

    Article  Google Scholar 

  10. V.L. Bertalanffy, General Systems Theory, Foundation, Development, Applications (George Braziller Inc, New York, 1969)

    Google Scholar 

  11. F. Munos, L. Perrin, M. Sardin, J.P. Josien, The approach MADS/MOSAR to manage the triptych “technology/normative/management”. in Society for Risk Analysis-Europe 15th Annual Conference. Ljubljana, Slovenia 11–13 September 2006

  12. J. Amory, La défense en profondeur d’un système complexe. Principes et méthodologie de référence. In Coll. Sciences du risque et du danger. Ed. Lavoisier Tec & Doc., Paris-France (2015)

  13. E. Krausmann, F. Mushtaq, A qualitative Natech damage scale for the impact of floods on selected industrial facilities. J. Nat. Hazards 46(2), 179–197 (2008)

    Article  Google Scholar 

  14. L.J. Steinberg, H. Sengul, A.M. Cruz, Natech risk and management: an assessment of the state of the art. J. Nat. Hazards 46(2), 143–152 (2008)

    Article  Google Scholar 

  15. Z. Mohaghegh, A. Mosleh, Incorporating organizational factors into probabilistic risk assessment of complex socio-technical systems: principles and theoretical foundations. J. Saf. Sci. 47(8), 1139–1158 (2009)

    Article  Google Scholar 

  16. J. Piwowar, E. Châtelet, P. Laclémence, An efficient process to reduce infrastructure vulnerabilities facing malevolence. J. Reliab. Eng. Syst. Saf. 94(11), 1869–1877 (2009)

    Article  Google Scholar 

  17. F.I. Khan, S.A. Abbasi, Models for domino effect analysis in chemical process industries. J. Process Saf. Prog. AIChE 17(2), 107–113 (1998)

    Article  Google Scholar 

  18. C.M. Pietersen, Analysis of the LPG disaster in Mexico city. J. Hazard. Mater. 20(1), 85–107 (1988)

    Article  Google Scholar 

  19. F. Kadri, E. Châtelet, G. Chen, Method for quantitative assessment of the domino effect in industrial sites. J. Process Saf. Environ. Prot. 91(6), 452–462 (2013)

    Article  Google Scholar 

  20. P. Latha, G. Gautam, K.V. Raghavan, Strategies for quantification of thermally initiated cascade effects. J. Loss Prev. Process Ind. 5(1), 15–21 (1992)

    Article  Google Scholar 

  21. G. Gubinelli, S. Zanelli, V. Cozzani, A simplified model for the assessment of the impact probability of fragments. J. Hazard. Mater. 116(3), 175–187 (2004)

    Article  Google Scholar 

  22. U. Hauptmanns, A procedure for analyzing the flight of missiles from explosions of cylindrical vessels. J. Loss Prev. Process Ind. 14(5), 395–402 (2001)

    Article  Google Scholar 

  23. Z.-J. Ni, Y. Wang, Z. Yin, Relative risk model for assessing domino effect in chemical process industry. J. Saf. Sci. 87(8), 156–166 (2016)

    Article  Google Scholar 

  24. B. Robert, L. Morabito, C. Debernard, Simulation and anticipation of domino effects among critical infrastructure. J. Crit. Infrastruct. 9(4), 275–303 (2013)

    Article  Google Scholar 

  25. B. Amirhosein, B. Abdolhamidzadeh, T. Abbasi, FREEDOM II: an improved methodology to assess domino effect frequency using simulation techniques. J. Process. Saf. Environ. Prot. 92(6), 714–722 (2014)

    Article  Google Scholar 

  26. C. Delvosalle, C. Fievez, S. Brohez, A methodology and a software (DOMINOXL) for studying domino effects. in 15th International Congress of Chemical and Process Engineering (Praha, Czech Republic, 2002), pp. 25–29

  27. INERIS, Méthode pour l’Identification des effets Domino, Rapport final Directiondes Risques Accidentels, Document INERIS-DRA (2002), 25472 (in French)

  28. R. Diestel, Graph Theory, 3rd edn, Graduate Texts in Mathematics GTM (Springer, Berlin, 2005)

    Google Scholar 

  29. DG-SSE, Référentiel Investigations des Accidents et Incidents du Groupe Sonatrach, direction générale santé, sécurité et environnement (2009), pp. 8–27 (in french)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Smaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaiah, M., Djebabra, M. & Bahmed, L. Contribution to the Improvement of the MADS–MOSAR Method for the Modeling of Domino Effects. J Fail. Anal. and Preven. 17, 440–449 (2017). https://doi.org/10.1007/s11668-017-0258-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0258-7

Keywords

Navigation