Skip to main content
Log in

Effect of Coating Thickness on the Slurry Erosion Resistance of HVOF-Sprayed WC-10Co-4Cr Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High-velocity oxy-fuel (HVOF)-sprayed WC-10Co-4Cr coatings were deposited with thickness of 150, 300 and 450 µm in the present work. The structural and mechanical properties, adhesion strength and residual stress were analyzed as a function of coating thickness. With increasing coating thickness, an increase in hardness and a drop in fracture toughness were observed. The compressive residual stresses decreased by a factor of two with increased coating thickness from 150 to 450 µm. The elastic modulus of the coatings was influenced by their porosity. The results of the slurry erosion tests indicated a brittle erosion response of the coatings, and the ratio of the erosion rate at 90° impact angle to that at 30° impact angle increased with increasing coating thickness. The slurry erosion resistance of the coatings was governed by the impact angle, residual stresses and mechanical properties of the coatings. The main material removal mechanisms were plastic grooving of the binder phase, carbide pullout, micro-cracking and brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Roy, Surface Engineering for Enhanced Performance against Wear, Springer, Austria, 2013. https://doi.org/10.1007/978-3-7091-0101-8

    Book  Google Scholar 

  2. S. Khurana, Engineering Silting Problems in Hydropower plant, Int. J. Sci. Res., 2015, 4, p 32–33.

    Google Scholar 

  3. M.R. Dorfman, Thermal Spray Coatings, Handb. Environ. Degrad. Mater. Second Ed., 2012, 5, p 569–596. https://doi.org/10.1016/B978-1-4377-3455-3.00019-5

    Article  Google Scholar 

  4. M. Roy and P. Davim Eds., Thermal Sprayed Coatings and Their Tribological Performances, IGI Global, New York, 2015

    Google Scholar 

  5. S. Kailash, A.S. Praveen, S. Suresh, J. Sarangan and N. Murugan, Comparison of Microstructural Characteristics of Plasma and HVOF Sprayed Ni-Cr/WC Coating, Int. J. ChemTech. Res., 2014, 6, p 3346–3348.

    CAS  Google Scholar 

  6. M. Roy, S. Rao, D.S. Rao and G. Sundararajan, Abrasive Wear Behaviour of Detonation Sprayed WC-Co Coatings on Mild Steel, Surf. Eng., 1999, 15, p 129–136. https://doi.org/10.1179/026708499101516470

    Article  CAS  Google Scholar 

  7. R.J.K. Wood and M. Roy, Tribology of thermal-sprayed coatings, Surface Engineering for Enhanced Performance against Wear, Printforce, the Netherlands. M. Roy Ed., Springer, Austria, 2013, p 1–43. https://doi.org/10.1007/978-3-7091-0101-8_1

    Chapter  Google Scholar 

  8. V. Katranidis, S. Gu, B. Allcock and S. Kamnis, Experimental Study of High Velocity Oxy-Fuel Sprayed WC-17Co Coatings Applied on Complex Geometries. Part A: Influence of Kinematic Spray Parameters on Thickness, Porosity, Residual Stresses and Microhardness, Surf. Coat. Technol., 2017, 311, p 206–215. https://doi.org/10.1016/j.surfcoat.2017.01.015

    Article  CAS  Google Scholar 

  9. J.A. Picas, M. Punset, M.T. Baile, E. Martínand and A. Forn, Effect of Oxygen/Fuel Ratio on the In-Flight Particle Parameters and Properties of HVOF WC-CoCr Coatings, Surf. Coatings Technol., 2011, 205, p S364–S368. https://doi.org/10.1016/j.surfcoat.2011.03.129

    Article  CAS  Google Scholar 

  10. S.G. Sapate and M. Roy, Solid particle erosion of thermal sprayed coating, Thermal Sprayed Coatings and Their Tribological Performances. M. Roy, P. Davim Ed., IGI Global, New York , 2015. https://doi.org/10.4018/9781466674899

    Chapter  Google Scholar 

  11. S. Bhandari, H. Singh, H. Kumar and V. Rastogi, Slurry Erosion Performance Study of Detonation Gun-Sprayed WC-10Co-4Cr Coatings on CF8M Steel Under Hydro-Accelerated Conditions, J. Therm. Spray Technol., 2012, 21, p 1054–1064.

    Article  CAS  Google Scholar 

  12. R.E. Kumar, M. Kamaraj, S. Seetharamu and S. Anand Kumar, A Pragmatic Approach and Quantitative Assessment of Silt Erosion Characteristics of HVOF and HVAF Processed WC-CoCr Coatings and 16Cr5Ni Steel for Hydro Turbine Applications, Mater. Des., 2017, 132, p 79–95. https://doi.org/10.1016/j.matdes.2017.06.046

    Article  CAS  Google Scholar 

  13. M. Roy, K.K. Ray and G. Sundaraan, Erosion Oxidation Interaction of Ni and Ni-Cr Alloy, Metall. Mater. Trans., 2001, 32(6), p 1431–1451. https://doi.org/10.1007/s11661-001-0232-5

    Article  Google Scholar 

  14. V. Javaheri, D. Porter and V.T. Kuokkala, Slurry Erosion of Steel—Review of Tests, Mechanisms and Materials, Wear, 2018, 408–409, p 248–273. https://doi.org/10.1016/j.wear.2018.05.010

    Article  CAS  Google Scholar 

  15. T. Frosell, M. Fripp and E. Gutmark, Investigation of Slurry Concentration Effects on Solid Particle Erosion Rate for an Impinging Jet, Wear, 2015, 342–343, p 33–43.

    Article  Google Scholar 

  16. L. Thakur and N. Arora, A Comparative Study on Slurry and Dry Erosion Behaviour of HVOF Sprayed WC-CoCr Coatings, Wear, 2013, 303, p 405–411.

    Article  CAS  Google Scholar 

  17. D. Kumar Goyal, H. Singh, H. Kumar and V. Sahni, Slurry Erosion Behaviour of HVOF Sprayed WC-10Co-4Cr and Al2O3+13TiO2 Coatings on a Turbine Steel, Wear, 2012, 289, p 46–57. https://doi.org/10.1016/j.wear.2012.04.016

    Article  CAS  Google Scholar 

  18. L. Thakur, N. Arora, R. Jayaganthan and R. Sood, An Investigation on Erosion Behavior of HVOF Sprayed WC–CoCr Coatings, Appl. Surf. Sci., 2011, 258, p 1225–1234. https://doi.org/10.1016/j.ijrmhm.2005.10.009

    Article  CAS  Google Scholar 

  19. Y. Wu, S. Hong, J. Zhang, Z. He, W. Guo, Q. Wang and G. Li, Microstructure and Cavitation Erosion Behavior of WC-Co-Cr Coating on 1Cr18Ni9Ti Stainless Steel by HVOF Thermal Spraying, Int. J. Refract. Met. Hard Mater., 2012, 32, p 21–26. https://doi.org/10.1016/j.ijrmhm.2012.01.002

    Article  CAS  Google Scholar 

  20. J. Singh, S. Kumar and S.K. Mohapatra, Optimization of Erosion Wear Influencing Parameters of HVOF Sprayed Pumping Material for Coal-Water Slurry, Mater. Today Proc., 2018, 5, p 23789–23795. https://doi.org/10.1016/j.matpr.2018.10.170

    Article  CAS  Google Scholar 

  21. S. Hong, Y. Wu, W. Gao, J. Zhang and Y. Zheng, Slurry Erosion-Corrosion Resistance and Microbial Corrosion Electrochemical Characteristics of HVOF Sprayed WC-10Co-4Cr Coating for Offshore Hydraulic Machinery, Int. J. Refract. Met. Hard Mater., 2018, 74, p 7–13. https://doi.org/10.1016/j.ijrmhm.2018.02.019

    Article  CAS  Google Scholar 

  22. J.E. Cho, S.Y. Hwang and K.Y. Kim, Corrosion Behavior of Thermal Sprayed WC Cermet Coatings Having Various Metallic Binders in Strong Acidic Environment, Surf. Coat. Technol., 2006, 200, p 2653–2662. https://doi.org/10.1016/j.surfcoat.2004.10.142

    Article  CAS  Google Scholar 

  23. Q. Wang, S. Luo, S. Wang, H. Wang and C.S. Ramachandran, Wear, Erosion and Corrosion Resistance of HVOF-Sprayed WC and Cr3C2 Based Coatings for Electrolytic Hard Chrome Replacement, Int. J. Refract. Met. Hard Mater., 2019, 81, p 242–252. https://doi.org/10.1016/j.ijrmhm.2019.03.010

    Article  CAS  Google Scholar 

  24. S.Y. Cui, Q. Miao, W.P. Liang, B.Z. Huang, Z. Ding and B.W. Chen, Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating, J. Therm. Spray Technol., 2017, 26, p 473–482.

    Article  CAS  Google Scholar 

  25. M. Roy, Dynamic Hardness of Detonation sprayed WC-Co Coating, J. Therm. Spray Technol., 2002, 11, p 393–399. https://doi.org/10.1361/105996302770348790

    Article  CAS  Google Scholar 

  26. J. Pina, A. Dias and J.L. Lebrun, Study by X-ray Diffraction and Mechanical Analysis of the Residual Stress Generation During Thermal Spraying, Mater. Sci. Eng. A., 2003, 347, p 21–31. https://doi.org/10.1016/S0921-5093(02)00580-4

    Article  Google Scholar 

  27. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni and A. Vaidya, Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study of Ni-5 wt.% Al Bond Coats, Mater. Sci. Eng. A., 2004, 364, p 216–231. https://doi.org/10.1016/j.msea.2003.08.023

    Article  CAS  Google Scholar 

  28. O.P. Oladijo, A.M. Venter and L.A. Cornish, Correlation Between Residual Stress and Abrasive Wear of WC-17Co Coatings, Int. J. Refract. Met. Hard Mater., 2014, 44, p 68–76. https://doi.org/10.1016/j.ijrmhm.2014.01.009

    Article  CAS  Google Scholar 

  29. A.M. Venter, V. Luzin, D. Marais, N. Sacks, E.N. Ogunmuyiwa and P.H. Shipway, Interdependence of Slurry Erosion Wear Performance and Residual Stress in WC-12wt.%Co and WC-10wt.%VC-12wt.%Co HVOF Coatings, Int. J. Refra Met. Hard Mater., 2020, 87, p 105101.

    Article  CAS  Google Scholar 

  30. G.A. Ludwig, C.F. Malfattia, R.M. Schroeder, V.Z. Ferrari and I.L. Muller, WC10Co4Cr Coatings Deposited by HVOF on Martensitic Stainless Steel for Use in Hydraulic Turbines: Resistance to Corrosion and Slurry Erosion, Surf. Coat. Technol., 2019, 377, p 124918.

    Article  CAS  Google Scholar 

  31. W.C. Oliver, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20.

    Article  CAS  Google Scholar 

  32. C. Balasingh and A. Singh, Residual Stresses and Their Measurements by X-Ray Diffraction Methods, Met. Mater. Process., 2000, 12, p 269–280.

    CAS  Google Scholar 

  33. G. Bolelli, T. Börner, F. Bozza, V. Cannillo, G. Cirillo and L. Lusvarghi, Cermet Coatings with Fe-Based Matrix as Alternative to WC-CoCr: Mechanical and Tribological Behaviours, Surf. Coat. Technol., 2012, 206, p 4079–4094. https://doi.org/10.1016/j.surfcoat.2012.03.094

    Article  CAS  Google Scholar 

  34. C.J. Li, A. Ohmori and Y. Harada, Formation of an Amorphous Phase in Thermally Sprayed WC-Co, J. Therm. Spray Technol., 1996, 5, p 69–73.

    Article  CAS  Google Scholar 

  35. R. Schwetzke and H. Kreye, Microstructure and Properties of Tungsten Carbide Coatings Sprayed with Various High-Velocity Oxygen Fuel Spray System, J. Therm. Spray Technol., 1999, 8, p 433–439.

    Article  CAS  Google Scholar 

  36. B.H. Kear, R.K. Sadangi, M. Jain, R. Yao, Z. Kalman, G. Skandan and W.E. Mayo, Thermal Sprayed Nanostructured WC/Co Hardcoatings, J. Therm. Spray Technol., 2000, 9(3), p 399–406.

    Article  CAS  Google Scholar 

  37. N. Vashishtha, S.G. Sapate, P. Bagde and A.B. Rathod, Effect of Heat Treatment on Friction and Abrasive Wear Behaviour of WC-12Co and Cr3C2-25NiCr Coatings, Tribol. Int., 2018, 118, p 381–399. https://doi.org/10.1016/j.triboint.2017.10.01

    Article  CAS  Google Scholar 

  38. T.K. Mishra, A. Kumar and S.K. Sinha,  Experimental Investigation and Study of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr Coating on its Sliding Wear Behavior, Int. J. Refract. Hard Met., 2021, 94, p 105404.

  39. N.S. Lim, S. Das, S.Y. Park, M.C. Kim and C.G. Park, Fabrication and Microstructural Characterization of Nano-structured WC/co Coatings, Surf. Coat. Technol., 2010, 205, p 430–435.

  40. Y. Qiao, Y. Liu and T.E. Fischer, Sliding and Abrasive Wear Resistance of Thermal-sprayed WC-CO Coatings, J. Therm Spray Tech., 2001, 10, p 118–125

  41. D. Stewart, P. Shipway, D McCartney, Microstructural Evolution in Thermally Sprayed WC–Co Coatings: Comparison Between Nanocomposite and Conventional Starting Powder, Acta Mater. 2000, 48, p 1596–1604.

  42. C.J. Li, A. Ohmori and K. Tani, Effect of WC Particle Size on the Abrasive Wear of Thermally Sprayed WC-co Coatings, Mater. Manuf. Process., 1999, 14, p 175–184. https://doi.org/10.1080/10426919908914815

    Article  CAS  Google Scholar 

  43. S. Usmani, S. Sampath, D.L. Houck and D. Lee, Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behavior of Thermally Sprayed WC-co Coatings, Tribol. Trans., 1997, 40, p 470–478. https://doi.org/10.1080/10402009708983682

    Article  CAS  Google Scholar 

  44. K. Ma, J. Zhu, H. Xie and H. Wang, Effect of Porous Microstructure on the Elastic Modulus of Plasma-Sprayed Thermal Barrier Coatings: Experiment and Numerical Analysis, Surf. Coat. Technol., 2013, 235, p 589–595. https://doi.org/10.1016/j.surfcoat.2013.08.030

    Article  CAS  Google Scholar 

  45. M. Wang and L.L. Shaw, Effects of the Powder Manufacturing Method on Microstructure and Wear Performance of Plasma Sprayed Alumina–Titania Coatings, Surf. Coat. Technol., 2007, 202, p 34–44.

    Article  CAS  Google Scholar 

  46. E.S. Zakharova, I.Y. Markova, A.L. Maslov, N.I. Polushin and A.I. Laptev, Morphology of Powders of Tungsten Carbide Used in Wear-Resistant Coatings and Deposition on the PDC Drill Bits, J. Phys. Conf. Ser., 2017 https://doi.org/10.1088/1742-6596/857/1/012058

    Article  Google Scholar 

  47. J.K. Robert, Wood, Tribology of Thermal Sprayed WC–Co Coatings, Int. J. Refract. Met. Hard Mater., 2010, 28, p 82–94.

    Article  Google Scholar 

  48. L.C. Erickson, H.M. Hawthorne and T. Troczynski, Correlations Between Micro-Structural Parameters, Micromechanical Properties and Wear Resistance of Plasma Sprayed Ceramic Coatings, Wear, 2001, 250, p 569–574.

    Article  Google Scholar 

  49. N. Vashishtha and S.G. Sapate, Abrasive Wear Maps for High Velocity Oxy Fuel (HVOF) Sprayed WC-12Co and Cr3C2-25NiCr coatings, Tribol. Int., 2017, 114, p 290–305. https://doi.org/10.1016/j.triboint.2017.04.037

    Article  CAS  Google Scholar 

  50. M. Roy, Elevated Temperature Erosive Wear of Metallic Materials, J. Phys. Appl. Phys., 2006, 39, p 101–124.

    Article  Google Scholar 

  51. M.P. Schmitt, B.J. Harder and D.E. Wolfe, Process-Structure-Property Relations for the Erosion Durability of Plasma Spray-Physical Vapor Deposition (PS-PVD) Thermal Barrier Coatings, Surf. Coat. Technol., 2016, 297, p 11–18. https://doi.org/10.1016/j.surfcoat.2016.04.029

    Article  CAS  Google Scholar 

  52. T.L. Oberle, Properties Influencing Wear of Metals, J. Metals, 1951, 3, p 438.

    Google Scholar 

  53. A. Matthews, The value of deposition processes for industrial tools, in: Proceedings of the 1st Conference on Materials Engineering, The University of Leeds, UK, July 1984. Institution of Metallurgists, 1984 p. 175, ISBN: 0-901-46224-1

  54. G. Sundararajan and M. Roy, The Solid Particle Erosion Behaviour of Metallic Material at Room and Elevated Temperature, Tribol. Intl., 1997, 30, p 339–359.

    Article  CAS  Google Scholar 

  55. M. Roy, A. Pauschitz, J. Wernisch and F. Franek, Influence of Mating Surface on Elevated Temperature Wear of 253 MA Alloy, Mater. Corros., 2004, 55, p 259–273.

    Article  CAS  Google Scholar 

  56. T.Y. Tsui and G.M. Pharr, Substrate Effects on Nanoindentation Mechanical Property Measurement of Soft Films on Hard Substrates, J. Mater. Res., 1999, 14(1), p 292.

    Article  CAS  Google Scholar 

  57. C.A. Charitidis and S. Logothetidis, Effect of Normal Load on the Nanotribological Properties of Sputtered Carbon Nitrite Film, Diamond Relat. Mater., 2005, 14, p 98–108.

    Article  CAS  Google Scholar 

  58. J.B. Cheng, X.B. Liang and B.S. Xu, Devitrification of Arc-Sprayed FeBSiNb Amorphous Coatings: Effects on Wear Resistance and Mechanical Behaviour, Surf. Coat. Technol., 2013, 235, p 720–726. https://doi.org/10.1016/j.surfcoat.2013.08.054

    Article  CAS  Google Scholar 

  59. S. Hong, J. Lin, Y. Wu, J. Wu, Y. Zheng, Y. Zhang, J. Cheng and W. Sun, Cavitation Erosion Characteristics at Various Flow Velocities in NaCl Medium of Carbide-Based Cermet Coatings Prepared by HVOF Spraying, Ceram. Int., 2020 https://doi.org/10.1016/j.ceramint.2020.09.022

    Article  Google Scholar 

  60. M. Roy, K.K. Ray and G. Sundararajan, Erosion-Oxidation Interaction in Ni and Ni-20Cr Alloy, Metall. Mater. Trans. A, 2001, 32, p 1431–1451.

    Article  Google Scholar 

  61. M. Roy, K.K. Ray and G. Sundararajan, An Analysis of the Transition from Metal Erosion to Oxide Erosion, Wear, 1998, 217, p 312–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, VNIT, for providing necessary facilities in carrying out the experimental studies. The constructive suggestions and the English editing of the reviewers are greatly acknowledged.

Funding

The authors greatly acknowledge the financial assistance provided by the Naval Research Board (NRB), India, under project NRB-418/MAT/18-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Mehar.

Ethics declarations

Conflict of interest

We state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapate, S.G., Tangselwar, N., Paul, S.N. et al. Effect of Coating Thickness on the Slurry Erosion Resistance of HVOF-Sprayed WC-10Co-4Cr Coatings. J Therm Spray Tech 30, 1365–1379 (2021). https://doi.org/10.1007/s11666-021-01190-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01190-2

Keywords

Navigation