Skip to main content
Log in

Fabrication of TiO2-SrCO3 Composite Coatings by Suspension Plasma Spraying: Microstructure and Enhanced Visible Light Photocatalytic Performances

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A novel TiO2-SrCO3 co-catalyst with a porous structure was fabricated by suspension plasma spraying. SrTiO3 as revealed by high-resolution TEM was formed by the chemical reaction of TiO2 with SrCO3 during the high-temperature plasma spraying. A narrow band gap (2.58 eV) and reduction in the recombination speed of photoinduced carriers of the coatings were detected by UV–visible diffuse reflectance spectrometry and fluorescence spectrometry, respectively. The enhanced visible light-driven photodegradation properties of the coatings resulted in promoted degradation of methylene blue. The composite coatings also demonstrated significantly pronounced bactericidal activities against the Gram-negative bacterium Escherichia coli than the pure TiO2 coatings, achieving a killing rate of over 99.7%. The results give insights on the potential to fabricate large-scale nano-TiO2-based porous photocatalytic coatings by suspension plasma spraying for versatile environmental applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, and G. Guo, Photocatalytic Organic Pollutants Degradation in Metal-Organic Frameworks, Energy Environ. Sci., 2014, 7, p 2831–2867

    CAS  Google Scholar 

  2. J.J. Pignatello, E. Oliveros, and A. MacKay, Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry, Crit. Rev. Environ. Sci. Technol., 2006, 36(1), p 1–84

    CAS  Google Scholar 

  3. J.-L. Wang and L.-J. Xu, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Crit. Rev. Environ. Sci. Technol., 2012, 42(3), p 251–325

    Google Scholar 

  4. M. Horáková, Š. Klementová, P. Kříž, S.K. Balakrishna, P. Špatenka, O. Golovko, P. Hájková, and P. Exnar, The Synergistic Effect of Advanced Oxidation Processes to Eliminate Resistant Chemical Compounds, Surf. Coat. Technol., 2014, 241, p 154–158

    Google Scholar 

  5. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, and A.G. Kontos, A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications, Appl. Catal. B Environ., 2012, 125, p 331–349

    CAS  Google Scholar 

  6. W. Pawlak, M. Jakubowska, A. Sobczyk-Guzenda, M. Makówka, H. Szymanowski, B. Wendler, and M. Gazicki-Lipman, Photo Activated Performance of Titanium Oxide Coatings Deposited by Reactive Gas Impulse Magnetron Sputtering, Surf. Coat. Technol., 2018, 349(15), p 647–654

    CAS  Google Scholar 

  7. P. Saritha, D.S.S. Raj, C. Aparna, P.N.V. Laxmi, V. Himabindu, and Y. Anjaneyulu, Degradative Oxidation of 2,4,6 Trichlorophenol Using Advanced Oxidation Processes—A Comparative Study, Water Air Soil Pollut., 2009, 200(1–4), p 169–179

    CAS  Google Scholar 

  8. J.M. Britto and M.C. Rangel, Advanced Oxidation Process of Phenolic Compounds in Industrial Wasterwater, Quim. Nova., 2008, 31, p 114–122

    CAS  Google Scholar 

  9. F. Wang, Q. Li, and D. Xu, Recent Progress in Semiconductor-Based Nanocomposite Photocatalysts for Solar-to-Chemical Energy Conversion, Adv. Energy Mater., 2017, 7(23), p 1700529

    Google Scholar 

  10. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Nano-Photocatalytic Materials: Possibilities and Challenges, Adv. Mater., 2012, 24(2), p 229–251

    CAS  Google Scholar 

  11. X.-Z. Liu, K. Wen, C.-M. Deng, K. Yang, C.-G. Deng, M. Liu, and K.-S. Zhou, Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions, J. Therm. Spray Technol., 2018, 27(3), p 245–254

    CAS  Google Scholar 

  12. C.S. Prajapati, A. Kushwaha, and P.P. Sahay, Experimental Investigation of Spray-Deposited Fe-Doped ZnO Nanoparticle Thin Films: Structural, Microstructural, and Optical Properties, J. Therm. Spray Technol., 2013, 22(7), p 1230–1241

    CAS  Google Scholar 

  13. F.L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and Environmental Functionalities of TiO2-Supported Photocatalysts Obtained by Suspension Plasma Spraying, Appl. Catal. B Environ., 2006, 68(1–2), p 74–84

    CAS  Google Scholar 

  14. Z. Hamden, S. Boufi, D.S. Conceicao, A.M. Ferraria, A.M. Botelho do Rego, D.P. Ferreira, L.F. Vieira Ferreira, and S. Bouattour, Li-N Doped and Codoped TiO2 Thin Films Deposited by Dip-Coating: Characterization and Photocatalytic Activity under Halogen Lamp, Appl. Surf. Sci., 2014, 314, p 910–918

    CAS  Google Scholar 

  15. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Enhanced Photocatalytic Activity of ZnO/CuO Nanocomposite for the Degradation of Textile Dye on Visible Light Illumination, Mater. Sci. Eng. C Mater., 2013, 33, p 91–98

    CAS  Google Scholar 

  16. N. Chandrasekharan and P.V. Kamat, Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles, J. Phys. Chem., 2000, 104(46), p 10851–10857

    CAS  Google Scholar 

  17. L.J. Guo, J.W. Luo, T. He, S.H. Wei, and S.S. Li, Photocorrosion-Limited Maximum Efficiency of Solar Photoelectrochemical Water Splitting, Phys. Rev. Appl., 2018, 10(6), p 064059

    CAS  Google Scholar 

  18. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances, Chem. Soc. Rev., 2014, 43(15), p 5234–5244

    CAS  Google Scholar 

  19. D.R. Baker and P.V. Kamat, Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate Versus Tubular Support Architectures, Adv. Funct. Mater., 2009, 19(5), p 805–811

    CAS  Google Scholar 

  20. J. Zhang, J.-H. Bang, C. Tang, and P.V. Kamat, Tailored TiO2-SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance, ACS Nano, 2010, 4(1), p 387–395

    CAS  Google Scholar 

  21. H. Kato and A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, J. Phys. Chem., 2002, 106(19), p 5029–5034

    CAS  Google Scholar 

  22. F. Davar, M. Salavati-Niasari, and S. Baskoutas, Temperature Controlled Synthesis of SrCO3 Nanorods via a Facile Solid-State Decomposition Rout Starting from a Novel Inorganic Precursor, Appl. Surf. Sci., 2011, 257(9), p 3872–3877

    CAS  Google Scholar 

  23. N. Tipcompor, T. Thongtem, A. Phuruangrat, and S. Thongtem, Characterization of SrCO3 and BaCO3 Nanoparticles Synthesized by Cyclic Microwave Radiation, Mater. Lett., 2012, 87, p 153–156

    CAS  Google Scholar 

  24. J. Fu, G.Z. Kyzas, Z.Q. Cai, E.A. Deliyanni, W. Liu, and D.Y. Zhao, Photocatalytic Degradation of Phenanthrene by Graphite Oxide-TiO2-Sr(OH)2/SrCO3 Nanocomposite Under Solar Irradiation: Effects of Water Quality Parameters and Predictive Modeling, Chem. Eng. J., 2018, 335, p 290–300

    CAS  Google Scholar 

  25. S. Jin, G.H. Dong, J.M. Luo, F.Y. Ma, and C.Y. Wang, Improved Photocatalytic NO Removal Activity of SrTiO3 by Using SrCO3 as a New Co-catalyst, Appl. Catal. B Environ., 2018, 227, p 24–34

    CAS  Google Scholar 

  26. F.L. Toma, L.M. Berger, T. Naumann, and S. Langner, Microstructures of Nanostructured Ceramic Coatings Obtained by Suspension Thermal Spraying, Surf. Coat. Technol., 2008, 202(18), p 4343–4348

    CAS  Google Scholar 

  27. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807–2829

    CAS  Google Scholar 

  28. X. He, Y. Liu, J. Huang, X. Chen, K. Ren, and H. Li, Adsorption of Alginate and Albumin on Aluminum Coatings Inhibits Adhesion of Escherichia Coli and Enhances the Anti-corrosion Performances of the Coatings, Appl. Surf. Sci., 2015, 332, p 89–96

    CAS  Google Scholar 

  29. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 9(1–2), p 226–239

    Google Scholar 

  30. T.T. Parlak, F. Apaydin, and K. Yildiz, Formation of SrTiO3 in Mechanically Activated SrCO3-TiO2 System, J. Therm. Anal. Calorim., 2017, 127(1), p 63–69

    Google Scholar 

  31. A. Fujishima, X.T. Zhang, and D.A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surf. Sci. Rep., 2008, 63(12), p 515–582

    CAS  Google Scholar 

  32. X. Zhang, N. Sun, B. Wu, Y. Lu, T. Guan, and W. Wu, Physical Characterization of Lansoprazole/PVP Solid Dispersion Prepared by Fluid-Bed Coating Technique, Powder Technol., 2008, 182(3), p 480–485

    CAS  Google Scholar 

  33. Z.H. Du, T.S. Zhang, M.M. Zhu, and J. Ma, PVP-Mediated Crystallization of Perovskite Phase in the PMN-PT Thin Films Prepared by Sol-Gel Processing, J. Am. Ceram. Soc., 2013, 93(3), p 686–691

    Google Scholar 

  34. H. Kozuka and S. Takenaka, Single-Step Deposition of Gel-Derived Lead Zirconate Titanate Films: Critical Thickness and Gel Film to Ceramic Film Conversion, J. Am. Ceram. Soc., 2002, 85(11), p 2696–2702

    CAS  Google Scholar 

  35. J.R. de Oliveira Lima, Y.A. Ghani, R.B. da Silva, F.M.C. Batista, R.A. Bini, L.C. Varanda, and J.E. de Oliveira, Strontium Zirconate Heterogeneous Catalyst for Biodiesel Production: Synthesis, Characterization and Catalytic Activity Evaluation, Appl. Catal. A Gen., 2012, 445, p 76–82

    Google Scholar 

  36. C. Belver, R. Bellod, A. Fuerte, and M. Fernandez-Garcia, Nitrogen-Containing TiO2 Photocatalysts—Part 1. Synthesis and Solid Characterization, Appl. Catal. B Environ., 2006, 65(3–4), p 301–308

    CAS  Google Scholar 

  37. O. Wiranwetchayan, S. Promnopas, T. Thongtem, A. Chaipanich, and S. Thongtem, Effect of Alcohol Solvents on TiO2 Films Prepared by Sol-Gel Method, Surf. Coat. Technol., 2017, 326, p 310–315

    CAS  Google Scholar 

  38. S.F. Yang, C.G. Niu, D.W. Huang, H. Zhang, C. Lianga, and G.-M. Zeng, SrTiO3 Nanocubes Decorated with Ag/AgCl Nanoparticles as Photocatalysts with Enhanced Visible-Light Photocatalytic Activity Towards the Degradation of Dyes, Phenol and Bisphenol A, Environ. Sci Nano, 2017, 4(3), p 585–595

    CAS  Google Scholar 

  39. M.S. Falcao, M.A.S. Garcia, C.V.R. de Moura, S. Nicolodi, and E.M. de Moura, Synthesis, Characterization and Catalytic Evaluation of Magnetically Recoverable SrO/CoFe2O4 Nanocatalyst for Biodiesel Production from Babassu Oil Transesterification, J. Brazil. Chem. Soc., 2018, 29(4), p 845–855

    CAS  Google Scholar 

  40. R. Gonzalez, H. Ashrafizadeh, A. Lopera, P. Mertiny, and A. McDonald, A Review of Thermal Spray Metallization of Polymer-Based Structures, J. Therm. Spray Technol., 2016, 25(5), p 897–919

    CAS  Google Scholar 

  41. D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46(4), p 855–874

    CAS  Google Scholar 

  42. C. Luo, J. Zhao, Y. Li, W. Zhao, Y. Zeng, and C. Wang, Photocatalytic CO2 Reduction Over SrTiO3: Correlation Between Surface Structure and Activity, Appl. Surf. Sci., 2018, 447, p 627–635

    CAS  Google Scholar 

  43. R.L. Penn and J.F. Banfield, Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals, Science, 1998, 281(5379), p 969–971

    CAS  Google Scholar 

  44. X. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science, 2011, 331(6018), p 746–750

    CAS  Google Scholar 

  45. U. Diebold, The Surface Science of Titanium Dioxide, Surf. Sci. Rep., 2003, 48(5–8), p 53–229

    CAS  Google Scholar 

  46. M. Ahmad, E. Ahmed, Z.-L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and W. Ahmed, A Facile One-Step Approach to Synthesizing ZnO/Graphene Composites for Enhanced Degradation of Methylene Blue Under Visible Light, Appl. Surf. Sci., 2013, 274, p 273–281

    CAS  Google Scholar 

  47. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Phase-Pure TiO2 Nanoparticles: Anatase, Brookite and Rutile. Nanotechnology, 2008, 14(9), p 145605

    Google Scholar 

  48. M. Tata, S. Banerjee, V.T. John, Y. Waguespack, and G.L. McPherson, Fluorescence Quenching of CdS Nanocrystallites in AOT Water-in-oil Microemulsions, Colloids Surf. A, 1997, 127(1–3), p 39–46

    CAS  Google Scholar 

  49. T. Saito, T. Iwase, J. Horie, and T. Morioka, Mode of Photocatalytic Bactericidal Action of Powdered Semiconductor TiO2 on Mutans Streptococci, J. Photochem. Photobiol. B, 1992, 14(4), p 369–379

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Research and Development Program of Zhejiang Province (Grant # 2017C01003), National Science Foundation of China (Grant # 31500772), Zhejiang Provincial Natural Science Foundation of China (Grant # LY18C100003) and International Scientific and Technological Cooperation Project of Ningbo (Grant # 2017D10011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Hua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, M., Liu, Y., Huang, J. et al. Fabrication of TiO2-SrCO3 Composite Coatings by Suspension Plasma Spraying: Microstructure and Enhanced Visible Light Photocatalytic Performances. J Therm Spray Tech 29, 1172–1182 (2020). https://doi.org/10.1007/s11666-020-01022-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01022-9

Keywords

Navigation