Skip to main content
Log in

High-Temperature Thermal Properties of Ba(Ni1/3Ta2/3)O3 Ceramic and Characteristics of Plasma-Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

To evaluate its applicability as a ceramic top coat in thermal barrier coatings, Ba(Ni1/3Ta2/3)O3 (BNT) was synthesized by a solid-state reaction method and its phase stability, coefficient of thermal expansion (CTE), and thermal conductivity were measured. Coatings with a structure of plasma-sprayed BNT/yttria-partially stabilized zirconia (YSZ) double ceramic coat and a high-velocity oxygen fuel (HVOF)-sprayed bond coat were fabricated. The thermal shock behavior of the coatings was investigated, and the phase composition and microstructure evolution of the BNT/YSZ coatings were characterized. The results showed that the BNT powder had single perovskite structure that remained unchanged after sintering at 1500 °C for 100 h. The average CTE of the BNT ceramic at 25-1400 °C was found to be 10.2 × 10−6 K−1, comparable to that of YSZ. The thermal conductivity at 1200 °C was found to be 2.56 W m−1 K−1. During thermal shock, the BNT/YSZ coatings spalled layer by layer, which can be attributed to the compositional deviation combined with the large temperature gradient in the BNT coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010

    Article  CAS  Google Scholar 

  2. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  CAS  Google Scholar 

  3. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29

    Article  CAS  Google Scholar 

  4. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  CAS  Google Scholar 

  5. K. Yasuda, M. Itoh, S. Arai, T. Suzuki, and M. Nakahashi, Phase Transformation of Yttria-Stabilized Zirconia Plasma-Sprayed Coatings in a Humid Atmosphere, J. Mater. Sci., 1997, 32(23), p 6291-6297

    Article  CAS  Google Scholar 

  6. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  7. G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22(5), p 646-658

    Article  Google Scholar 

  8. X.Q. Cao, R. Vassen, and D. Stöver, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  CAS  Google Scholar 

  9. P. Ctibor, B. Nevrla, J. Cizek, and F. Lukac, Strontium Zirconate TBCs Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch, J. Therm. Spray Technol., 2017, 26(8), p 1804-1809

    Article  CAS  Google Scholar 

  10. L. Guo, H.B. Guo, G.H. Ma, S.K. Gong, and H.B. Xu, Phase Stability, Microstructural and Thermo-Physical Properties of BaLn2Ti3O10 (Ln = Nd and Sm) Ceramics, Ceram. Int., 2013, 39(6), p 6743-6749

    Article  CAS  Google Scholar 

  11. J.Y. Yuan, J.B. Sun, J.S. Wang, H. Zhang, S.J. Dong, J.N. Jiang, L.H. Deng, X. Zhou, and X.Q. Cao, SrCeO3 as a Novel Thermal Barrier Coating Candidate for High-Temperature Applications, J. Alloys Compd., 2018, 740, p 519-528

    Article  CAS  Google Scholar 

  12. W. Ma, M.O. Jarligo, D.E. Mack, D. Pitzer, J. Malzbender, R. Vaßen, and D. Stöver, New Generation Perovskite Thermal Barrier Coating Materials, J. Therm. Spray Technol., 2008, 17(5–6), p 831-837

    Article  CAS  Google Scholar 

  13. R. Guo, A.S. Bhalla, and L.E. Cross, Ba(Mg1/3Ta2/3)O3 Single Crystal Fiber Grown by the Laser Heated Pedestal Growth Technique, J. Appl. Phys., 1994, 75(9), p 4704-4708

    Article  CAS  Google Scholar 

  14. Y.P. Cao, Q.S. Wang, Y.B. Liu, X.J. Ning, and H. Wang, Characteristics and Thermal Cycling Behavior of Plasma-Sprayed Ba(Mg1/3Ta2/3)O3 Thermal Barrier Coatings, Ceram. Int., 2017, 43(14), p 10955-10959

    Article  CAS  Google Scholar 

  15. M.O. Jarligo, D.E. Mack, R. Vassen, and D. Stöver, Application of Plasma-Sprayed Complex Perovskites as Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 187-193

    Article  CAS  Google Scholar 

  16. R. Tarvin and P.K. Davies, A-Site and B-Site Order in (Na1/2La1/2)(Mg1/3Nb2/3)O3 Perovskite, J. Am. Ceram. Soc., 2010, 87(5), p 859-863

    Article  Google Scholar 

  17. R. Mani, N.S.P. Bhuvanesh, K.V. Ramanujachary, W. Green, S.E. Lofland, and J. Gopalakrishnan, A Novel One-Pot Metathesis Route for the Synthesis of Double Perovskites, Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) with 1:2 Ordering of M and M’ Atoms, J. Mater. Chem., 2007, 17(16), p 1589-1592

    Article  CAS  Google Scholar 

  18. Y.T. Shao, Y.B. Liu, Q.S. Wang, and X.J. Ning, First-Principles Investigation of Novel Thermal Barrier Coating Materials Ba(B’1/3Ta2/3)O3, J. Ceram., 2017, 38(3), p 356-360

    Google Scholar 

  19. B. Xu, W.F. Zhang, X.Y. Liu, J.H. Ye, W.H. Zhang, L. Shi, X.G. Wan, J. Yin, and Z.G. Liu, Photophysical Properties and Electronic Structures of the Perovskite Photocatalysts Ba3NiM2O9 (M = Nb, Ta), Phys. Rev. B, 2007, 76(12), p 125109

    Article  Google Scholar 

  20. P.F. Ning, L.X. Li, P. Zhang, and W.S. Xia, Raman Scattering, Electronic Structure and Microwave Dielectric Properties of Ba([Mg1−xZnx]1/3Ta2/3)O3 Ceramics, Ceram. Int., 2012, 38(2), p 1391-1398

    Article  CAS  Google Scholar 

  21. J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, and P. Abrman, Estimation of Heat Capacities of Solid Mixed Oxides, Thermochim. Acta, 2002, 395(1), p 27-46

    Article  Google Scholar 

  22. R.A. Swalin, Thermodynamics of Solids, Wiley, New York, 1972, p 53-87

    Google Scholar 

  23. H.F. Chen, Y. Liu, Y.F. Gao, S.Y. Tao, and H.J. Luo, Design, Preparation, and Characterization of Graded YSZ/La2Zr2O7 Thermal Barrier Coatings, J. Am. Ceram. Soc., 2010, 93(6), p 1732-1740

    CAS  Google Scholar 

  24. W. Ma, S.K. Gong, H.B. Xu, and X.Q. Cao, On Improving the Phase Stability and Thermal Expansion Coefficients of Lanthanum Cerium Oxide Solid Solutions, Scr. Mater., 2006, 54(8), p 1505-1508

    Article  CAS  Google Scholar 

  25. W.D. Kingery, Thermal Conductivity: XII, Temperature Dependence of Conductivity for Single-Phase Ceramics, J. Am. Ceram. Soc., 1955, 38, p 251-255

    Article  CAS  Google Scholar 

  26. H.Y. Lee, K. Huang, and J.B. Goodenough, Sr- and Ni-Doped LaCoO3 and LaFeO3 Perovskites, J. Electrochem. Soc., 1998, 145(9), p 3220-3227

    Article  Google Scholar 

  27. R.P. Haggerty and R. Seshadri, Oxygen Stoichiometry, Crystal Structure, and Magnetism in La0.5Sr0.5CoO3-δ, J. Phys. Condens. Matter, 2004, 16(36), p 6477-6484

    Article  CAS  Google Scholar 

  28. Y.P. Cao, Q.S. Wang, Y.B. Liu, and Y.T. Shao, Preparation and Thermal Shock Resistance of Ba(Mg1/3Ta2/3)O3 Thermal Barrier Coatings, Rare Metal Mater. Eng., 2018, 47, p 164-168

    Google Scholar 

  29. G.V. Samsonov, The Oxide Handbook, 2nd ed., IFI/Plenum, New York, 1986

    Google Scholar 

  30. W. Ma, H.Y. Dong, H.B. Guo, S.K. Gong, and X.B. Zheng, Thermal Shock Behavior of La2Ce2O7/8YSZ Double-Ceramic-Layer Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2010, 204(21), p 3366-3370

    Article  CAS  Google Scholar 

  31. H.Y. Dong, D.X. Wang, Y.L. Pei, H.Y. Li, P. Li, and W. Ma, Optimization and Thermal Shock Behavior of La2Ce2O7 Thermal Barrier Coatings, Ceram. Int., 2013, 39(2), p 1863-1870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Beijing, China (Grant No. 2131006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Wang, Q., Liu, Y. et al. High-Temperature Thermal Properties of Ba(Ni1/3Ta2/3)O3 Ceramic and Characteristics of Plasma-Sprayed Coatings. J Therm Spray Tech 27, 1594–1601 (2018). https://doi.org/10.1007/s11666-018-0796-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0796-x

Keywords

Navigation