Skip to main content
Log in

Predicting the Load-Carrying Capacity and Wear Resistance of Duplex-Coated Low-Strength Alloys for Severe Service Ball Valves

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The load-carrying capacity and wear resistance of a duplex-coated 316 stainless steel were determined, and a finite element numerical approach was developed to predict and corroborate experimental observations. Low-strength alloys are generally used for highly demanding valve applications due to their superior chemical stability, galvanic corrosion resistance, and lower susceptibility to stress corrosion cracking failure. Hardfacing (using thermal spraying, laser cladding, or plasma transferred arc welding) is currently the most common solution to protect valve components. Hardfacing provides a thick, hardened case that significantly improves tribological performance. However, hardfaced layers provide lower wear resistance compared to vacuum-deposited hard coatings. One solution to further improve hardfacing performance is a duplex approach, which combines the two processes. This study investigates the following materials: a 316 stainless steel base hardfaced with laser-cladded Co-Cr superalloy and topped with a CVD nanostructured W-WC coating. Tribological properties of three configurations were assessed for their ability to delay initiation of plastic deformation and surface cracking under quasistatic loading and for their resistance to dry reciprocal sliding wear. The results demonstrate that finite element modeling allows numerical prediction and comparison of the load-carrying capacity and wear resistance of duplex-coated AISI 316 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Vernhes et al., Nanostructured and Conventional Cr2O3, TiO2, TiO2-Cr2O3 Thermal-Sprayed Coatings for Metal-Seated Ball Valve Applications in Hydrometallurgy, J. Therm. Spray Technol., 2016, 25(5), p 1068-1078

    Article  CAS  Google Scholar 

  2. H. Chiang, C. Wang, M. Wu, and E. Wolff-Klammer, Investigation of Stress Corrosion Cracking on Brass Valves with Laboratory Testing and X-ray Computed Tomography, Corrosion, 2012, 2012

  3. T.C. Dickenson, Valves, Piping, and Pipelines Handbook, Elsevier, New York City, 1999

    Google Scholar 

  4. B.K. Holmes and S. Bond, Sour Service Limits of Dual-Certified 316/316L Austenitic Stainless Steel and Weldments, Corrosion, 2010, 2010

  5. D. Bush, J. Brown, and K. Lewis, An Overview of NACE International Standard MR0103 and Comparison with MR0175, Corros, 2004, 2004

  6. NORSOK Standard M-001, Materials Selection, 2014

  7. ASTM International, Standard Guide for Evaluating Nonmetallic Materials for Oxygen Service, ASTM International, West Conshohocken, 2015

    Google Scholar 

  8. P.F. Mendez et al., Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4-25

    Article  Google Scholar 

  9. L. Vernhes, M. Azzi, E. Bousser, T. Schmitt, J.M. Lamarre, and J.E. Klemberg-Sapieha, Hybrid Co-Cr/W-WC and Ni-W-Cr-B/W-WC Coating Systems, J. Therm. Spray Technol., 2016, 25(1-2), p 346-356

    Article  CAS  Google Scholar 

  10. K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, and S. Varjus, A Model for Stresses, Crack Generation and Fracture Toughness Calculation in Scratched TiN-Coated Steel Surfaces, Wear, 2003, 254(3), p 278-291

    Article  CAS  Google Scholar 

  11. L. Vernhes, M. Azzi, and J.E. Klemberg-Sapieha, Alternatives for Hard Chromium Plating: Nanostructured Coatings for Severe-Service Valves, Mater. Chem. Phys., 2013, 140, p 522-528

    Article  CAS  Google Scholar 

  12. G. Cassar, S. Banfield, J.C.A.-B. Wilson, J. Housden, A. Matthews, and A. Leyland, Tribological Properties of Duplex Plasma Oxidised, Nitrided and PVD Coated Ti-6Al-4V, Surf. Coat. Technol., 2011, 206(2-3), p 395-404

    Article  CAS  Google Scholar 

  13. Y. Yusuf, Z. Mohd Rosli, J.M. Juoi, O. Nooririnah, and U.A.A. Azlan, The Influence of the Microwave Plasma Nitrided Ti6Al4V Substrate Properties to the Duplex Coating Performance, Appl. Mech. Mater., 2015, 761, p 68-72

    Article  Google Scholar 

  14. R. Rodríguez-Baracaldo, J.A. Benito, E.S. Puchi-Cabrera, and M.H. Staia, High Temperature Wear Resistance of (TiAl)N PVD Coating on Untreated and Gas Nitrided AISI, H13 Steel with Different Heat Treatments, Wear, 2007, 262(3-4), p 380-389

    Article  Google Scholar 

  15. C. Li and T. Bell, Corrosion Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Corros. Sci., 2004, 46(6), p 1527-1547

    Article  CAS  Google Scholar 

  16. L. Nosei, S. Farina, M. Ávalos, L. Náchez, B.J. Gómez, and J. Feugeas, Corrosion Behavior of Ion Nitrided AISI, 316L Stainless Steel, Thin Solid Films, 2008, 516(6), p 1044-1050

    Article  CAS  Google Scholar 

  17. E. Bemporad, M. Sebastiani, M.H. Staia, and E. Puchi Cabrera, Tribological Studies on PVD/HVOF Duplex Coatings on Ti6Al4V Substrate, Surf. Coat. Technol., 2008, 203(5-7), p 566-571

    Article  CAS  Google Scholar 

  18. J.A. Picas, S. Menargues, E. Martin, C. Colominas, and M.T. Baile, Characterization of Duplex Coating System (HVOF + PVD) on Light Alloy Substrates, Surf. Coat. Technol., 2017, 318, p 326-331

    Article  CAS  Google Scholar 

  19. F. Liu, C. Liu, S. Chen, X. Tao, and Y. Zhang, Laser Cladding Ni-Co Duplex Coating on Copper Substrate, Opt. Lasers Eng., 2010, 48(7-8), p 792-799

    Article  Google Scholar 

  20. F. Casadei and M. Tului, Combining Thermal Spraying and PVD Technologies: A New Approach of Duplex Surface Engineering for Ti Alloys, Surf. Coat. Technol., 2013, 237, p 415-420

    Article  CAS  Google Scholar 

  21. G. Bolelli et al., Thermally Sprayed Coatings as Interlayers for DLC-Based Thin Films, J. Therm. Spray Technol., 2009, 18(2), p 231-242

    Article  CAS  Google Scholar 

  22. E. Bemporad, M. Sebastiani, F. Casadei, and F. Carassiti, Modelling, Production and Characterisation of Duplex Coatings (HVOF and PVD) on Ti-6Al-4V Substrate for Specific Mechanical Applications, Surf. Coat. Technol., 2007, 201(18), p 7652-7662

    Article  CAS  Google Scholar 

  23. Y.N. Zhuk, Hardide™: Advanced Nano-Structured CVD Coating, Int. J. Microstruct. Mater. Prop., 2007, 2(1), p 90-98

    CAS  Google Scholar 

  24. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583

    Article  CAS  Google Scholar 

  25. ISO 26443:2016, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics). Rockwell Indentation Test for Evaluation of Adhesion of Ceramic Coatings

  26. ASTM International, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM International, West Conshohocken, 2016

    Google Scholar 

  27. L.-D.K.U. Manual and I. Volume, Version 971, vol 7374, Livermore Softw. Technol. Corp., 2007, p. 354

  28. S.-S. Chang, H.-C. Wu, and C. Chen, Impact Wear Resistance of Stellite 6 Hardfaced Valve Seats with Laser Cladding, Mater. Manuf. Process., 2008, 23(7), p 708-713

    Article  CAS  Google Scholar 

  29. M.Z. Huq and J.-P. Celis, Expressing Wear Rate in Sliding Contacts Based on Dissipated Energy, Wear, 2002, 252(5-6), p 375-383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laberge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laberge, M., Bousser, E., Schmitt, J. et al. Predicting the Load-Carrying Capacity and Wear Resistance of Duplex-Coated Low-Strength Alloys for Severe Service Ball Valves. J Therm Spray Tech 27, 1177–1186 (2018). https://doi.org/10.1007/s11666-018-0752-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0752-9

Keywords

Navigation