Skip to main content
Log in

Modeling of Rapid Solidification with Undercooling Effect During Droplet Flattening on a Substrate in Coating Formation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The coating deposit on the substrate in thermal spray coating process develops by solidification of individual molten particle which impacts, flattens and solidifies on the surface of the substrate. Droplet flattening and solidification typically involves rapid cooling. In this paper, a model for non-equilibrium rapid solidification of a molten droplet spreading onto a substrate is presented. Transient flow during droplet impact and its subsequent spreading is considered using the volume of fluid surface tracking method which was fully coupled with the rapid solidification model. The rapid solidification model includes undercooling, nucleation, interface tracking, non-equilibrium solidification kinetics and combined heat transfer and fluid flow as required to treat a non-stagnant splat formed from droplet flattening. The model is validated with the literature results on stagnant splats. Subsequently, using the model the characteristics of the rapidly solidifying interface for non-stagnant splat, such as interface velocity and interface temperature, are described and the effect of undercooling and interfacial heat transfer coefficient are highlighted. In contrast to the stagnant splat, the non-stagnant splat considered in this study displays interesting features in the rapidly solidifying interface. These are attributed to droplet thinning and droplet recoiling that occur during the droplet spreading process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c :

Specific heat (J kg−1 K−1)

C :

Constant related to Darcy source term (kg m−3 s−1)

D 0 :

Initial droplet diameter (m)

f s :

Weight fraction of solid

f l :

Weight fraction of liquid

F :

Volume of fluid function

F vol :

Continuum surface tension force (N m−3)

\(\vec{g}\) :

Acceleration due to gravity vector (m s−2)

\(\Delta G_{\text{am}}\) :

Activation energy for molecular migration (\({\text{J}}\,{\text{mol}}^{ - 1}\))

h :

Heat transfer coefficient (\({\text{W}}\,{\text{m}}^{ - 2} \,{\text{K}}^{ - 1}\))

H :

Enthalpy (J)

\(\Delta H_{\text{m}}\) :

Heat of fusion (\({\text{J}}\;{\text{mol}}^{ - 1}\))

k :

Thermal conductivity (W m−1 K−1)

L d :

Latent heat of fusion (J kg−1)

P :

Pressure (Pa)

T :

Temperature (K)

T i :

Interface temperature (K)

t :

Time (s)

\(t_{\text{s}}^{*}\) :

Dimensionless spreading time

\(T_{\text{m}}\) :

Equilibrium melting temperature (K)

\(T_{\text{N}}\) :

Nucleation temperature (K)

\(T_{0}\) :

Initial temperature (K)

\(\Delta T_{\text{i}}\) :

Interface undercooling (K)

\(U_{0}\) :

Droplet’s initial impact velocity (m s−1)

\(\vec{u}\) :

Continuum mixture velocity vector (m s−1)

\(V_{\text{i}}\) :

Interface velocity (m s−1)

μ :

Dynamic viscosity (kg m−1 s−1)

\(\mu_{k}\) :

Linear kinetic coefficient (\({\text{m s K}}^{ - 1}\))

\(\theta\) :

Contact angle

\(\beta\) :

Kinetics constant

\(\kappa\) :

Boltzmann’s constant (\({\text{J}}\;{\text{K}}^{ - 1}\))

\(\delta\) :

Solid–liquid interface thickness (m)

ξ:

Maximum spreading ratio

air:

Air

eff:

Effective

i:

Solid–liquid interface

l:

Liquid

d:

Droplet

l, d:

Liquid droplet

0:

Initial

sub:

Substrate

s, d:

Solid droplet

References

  1. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I. First Splat Solidification, Thin Solid Films, 2001, 397(1), p 30-39

    Article  Google Scholar 

  2. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397(1), p 40-48

    Article  Google Scholar 

  3. T.W. Clyne, Numerical Treatment of Rapid Solidification, Metall. Trans. B, 1984, 15(2), p 369-381

    Article  Google Scholar 

  4. Y. Lahmar-Mebdoua, A. Vardelle, P. Fauchais, and D. Gobin, Modelling the Nucleation Process in Alumina Lamellae Deposited on a Steel Substrate, Int. J. Therm. Sci., 2010, 49(3), p 522-528

    Article  Google Scholar 

  5. H. Liu, M. Bussmann, and J. Mostaghimi, A Comparison of Hyperbolic and Parabolic Models of Phase Change of a Pure Metal, Int. J. Heat Mass Transf., 2009, 52(5–6), p 1177-1184

    Article  Google Scholar 

  6. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, and J. Mostaghimi, Capillary Effects During Droplet Impact on a Solid Surface, Phys. Fluids, 1996, 8(3), p 650-659

    Article  Google Scholar 

  7. M. Bussmann, J. Mostaghimi, and S. Chandra, On a Three-Dimensional Volume Tracking Model of Droplet Impact, Phys. Fluids, 1999, 11(6), p 1406-1417

    Article  Google Scholar 

  8. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Therm. Spray Technol., 2002, 11(2), p 206-217

    Article  Google Scholar 

  9. M. Xue, Y. Heichal, S. Chandra, and J. Mostaghimi, Modeling the Impact of a Molten Metal Droplet on a Solid Surface Using Variable Interfacial Thermal Contact Resistance, J. Mater. Sci., 2007, 42(1), p 9-18

    Article  Google Scholar 

  10. S. Kamnis and S. Gu, Numerical Modelling of Droplet Impingement, J. Phys. D Appl. Phys., 2005, 38(19), p 3664-3673

    Article  Google Scholar 

  11. Y.Z. Zheng, Q. Li, Z.H. Zheng, J.F. Zhu, and P.L. Cao, Modeling the Impact, Flattening and Solidification of a Molten Droplet on a Solid Substrate During Plasma Spraying, Appl. Surf. Sci., 2014, 317, p 526-533

    Article  Google Scholar 

  12. C. Le Bot, S. Vincent, E. Meillot, F. Sarret, J.-P. Caltagirone, and L. Bianchi, Numerical Simulation of Several Impacting Ceramic Droplets with Liquid/solid Phase Change, Surf. Coati. Technol., 2015, 268, p 272-277

    Article  Google Scholar 

  13. Y.M. Liao, Y.Z. Zheng, Z.H. Zheng, and Q. Li, Numerical Simulation of Zirconia Splat Formation and Cooling During Plasma Spray Deposition, Appl. Phys. A Mater. Sci. Process., 2016, 122(7), p 1-7

    Article  Google Scholar 

  14. Y. Zhang, S. Matthews, A.T.T. Tran, and M. Hyland, Effects of Interfacial Heat Transfer, Surface Tension and Contact Angle on the Formation of Plasma-Sprayed Droplets Through Simulation Study, Surf. Coat. Technol., 2016, 307, p 807-816

    Article  Google Scholar 

  15. P. Wei, Z. Wei, S. Li, C. Tan, and J. Du, Splat Formation During Plasma Spraying for 8 Mol % Yttria-Stabilized Zirconia Droplets Impacting on Stainless Steel Substrate, Appl. Surf. Sci., 2014, 321, p 538-547

    Article  Google Scholar 

  16. R.C. Ruhl, Cooling Rates in Splat Cooling, Mater. Sci. Eng., 1967, 1, p 313-320

    Article  Google Scholar 

  17. P.H. Shingu and R. Ozaki, Solidification Rate in Rapid Conduction Cooling, Metall. Trans. A, 1975, 6(1), p 33-37

    Article  Google Scholar 

  18. T. Clyne, Numerical Treatment of Rapid Solidification, Metall. Trans. B, 1984, 15(June), p 369-381

    Article  Google Scholar 

  19. G.-X. Wang and E.F. Matthys, Modelling of Heat Transfer and Solidification during Splat Cooling: Effect of Splat Thickness and Splat/Substrate Thermal Contact, Int. J. Rapid Solidif., 1991, 6, p 141-174

    Google Scholar 

  20. G.-X. Wang and E.F. Matthys, Numerical Modelling of Phase Change and Heat Transfer during Rapid Solidification Processes: Use of Control Volume Integrals with Element Subdivision, Int. J. Heat Mass Transf., 1992, 35(1), p 141-153

    Article  Google Scholar 

  21. T. Bennett and D. Poulikakos, Heat Transfer Aspects of Splat-Quench Solidification: Modelling and Experiment, J. Mater. Sci., 1994, 29, p 2025-2039

    Article  Google Scholar 

  22. Y.K. Chae, J. Mostaghimi, and T. Yoshida, Deformation and Solidification Process of a Super-Cooled Droplet Impacting on the Substrate under Plasma Spraying Conditions, Sci. Technol. Adv. Mater., 2000, 1(3), p 147-156

    Article  Google Scholar 

  23. P.S. Wei and F.B. Yeh, Heat Transfer Coefficient in Rapid Solidification of a Liquid Layer on a Substrate, J. Heat Transfer, 2000, 122, p 792-800

    Article  Google Scholar 

  24. H. Zhang, X.Y. Wang, L.L. Zheng, and S. Sampath, Numerical Simulation of Nucleation, Solidification, and Microstructure Formation in Thermal Spraying, Int. J. Heat Mass Transf., 2004, 47(10–11), p 2191-2203

    Article  Google Scholar 

  25. H. Zhang, X.Y. Wang, L.L. Zheng, and X.Y. Jiang, Studies of Splat Morphology and Rapid Solidification During Thermal Spraying, Int. J. Heat Mass Transf., 2001, 44(24), p 4579-4592

    Article  Google Scholar 

  26. G.-X. Wang, R. Goswami, S. Sampath, and V. Prasad, Understanding the Heat Transfer and Solidification of Plasma-Sprayed Yttria-Partially Stabilized Zirconia Coatings, Mater. Manuf. Process., 2004, 19(2), p 259-272

    Article  Google Scholar 

  27. A. Kumar and S. Gu, Porous Surfaces via Impinging and Solidifying Molten Hollow Melt Droplets on Substrates, Trans. Indian Inst. Met., 2012, 65(6), p 771-775

    Article  Google Scholar 

  28. A. Kumar and S. Gu, Modelling Impingement of Hollow Metal Droplets onto a Flat Surface, Int. J. Heat Fluid Flow, 2012, 37, p 189-195

    Article  Google Scholar 

  29. A. Kumar, S. Gu, and S. Kamnis, Simulation of Impact of a Hollow Droplet on a Flat Surface, Appl. Phys. A Mater. Sci. Process., 2012, 109(1), p 101-109

    Article  Google Scholar 

  30. A. Kumar, S. Gu, H. Tabbara, and S. Kamnis, Study of Impingement of Hollow ZrO2 Droplets onto a Substrate, Surf. Coat. Technol., 2013, 220, p 164-169

    Article  Google Scholar 

  31. R.K. Shukla and A. Kumar, Substrate Melting and Re-solidification During Impact of High-Melting Point Droplet Material, J. Therm. Spray Technol., 2015, 24(8), p 1368-1376

    Article  Google Scholar 

  32. N. Pathak, A. Kumar, A. Yadav, and P. Dutta, Effects of Mould Filling on Evolution of the Solid–Liquid Interface during Solidification, Appl. Therm. Eng., 2009, 29(17–18), p 3669-3678

    Article  Google Scholar 

  33. W.D. Bennon, F.P. Incropera, and A. Continuum, Model for Momentum, Heat and Species Transport in Binary Solid–Liquid Phase Change Systems—I. Model Formulation, Int. J. Heat Mass Transf., 1987, 30(10), p 2161-2170

    Article  Google Scholar 

  34. A.D. Brent, V.R. Voller, and K.J. Reid, Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal, Numer. Heat Transf., 1988, 13(3), p 297-318

    Google Scholar 

  35. J.U. Brackbill, D.B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 1992, 100(2), p 335-354

    Article  Google Scholar 

  36. M. Pasandideh-Fard and J. Mostaghimi, On the Spreading and Solidification of Molten Particles in a Plasma Spray Process: Effect of Thermal Contact Resistance, Plasma Chem. Plasma Processing, 1996, 16(1), p 83-98

    Google Scholar 

  37. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50-58

    Article  Google Scholar 

  38. C.G. Levi and R. Mehrabian, Heat Flow During Rapid Solidification of Undercooled Metal Droplets, Metall. Trans. A, 1982, 13(2), p 221-234

    Article  Google Scholar 

  39. J.W. Cahn, W.B. Hillig, and G.W. Sears, The Molecular Mechanism of Solidification, Acta Metall., 1964, 12(12), p 1421-1439

    Article  Google Scholar 

  40. F.B. Yeh, P.S. Wei, and S.H. Chiu, Distinct Property Effects on Rapid Solidification of a Thin Liquid Layer on a Substrate Subject to Self-consistent Melting, J. Cryst. Growth, 2003, 247(3–4), p 563-575

    Article  Google Scholar 

  41. J. Mostaghimi, S. Chandra, J. Mostaghimi, and S. Chandra, Air Bubble Entrapment under an Impacting Droplet Air Bubble Entrapment under an Impacting Droplet, Phys. Fluids, 2003, 2003(173), p 173-183

    Google Scholar 

  42. K. Shinoda, T. Koseki, and T. Yoshida, Influence of Impact Parameters of Zirconia Droplets on Splat Formation and Morphology in Plasma Spraying, J. Appl. Phys., 2006, 100(7), p 074903

    Article  Google Scholar 

  43. K. Shinoda, Y. Kojima, and T. Yoshida, In Situ Measurement System for Deformation and Solidification Phenomena of Yttria-Stabilized Zirconia Droplets Impinging on Quartz Glass Substrate under Plasma-Spraying Conditions, J. Therm. Spray Technol., 2005, 14(4), p 511-517

    Article  Google Scholar 

  44. S. Sampath, X. Jiang, J. Matejicek, A. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng., A, 1999, 272(1), p 181-188

    Article  Google Scholar 

  45. X. Jiang, J. Matejicek, and S. Sampath, Substrate Temperature Effects on the Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings, Mater. Sci. Eng., A, 1999, 272(1), p 189-198

    Article  Google Scholar 

  46. Y. Tanaka and M. Fukumoto, Investigation of Dominating Factors on Flattening Behavior of Plasma Sprayed Ceramic Particles, Surf. Coat. Technol., 1999, 120–121, p 124-130

    Article  Google Scholar 

  47. L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, Splat Formation and Cooling of Plasma-Sprayed Zirconia, Thin Solid Films, 1997, 305(1–2), p 35-47

    Article  Google Scholar 

  48. M. Fukumoto, K. Yang, K. Tanaka, T. Usami, T. Yasui, and M. Yamada, Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface between Molten Droplet and Substrate Surface, J. Therm. Spray Technol., 2011, 20(1–2), p 48-58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R.K., Patel, V. & Kumar, A. Modeling of Rapid Solidification with Undercooling Effect During Droplet Flattening on a Substrate in Coating Formation. J Therm Spray Tech 27, 269–287 (2018). https://doi.org/10.1007/s11666-017-0666-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0666-y

Keywords

Navigation