Skip to main content
Log in

Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.R. Fernández, A. García, J.M. Cuetos, R. González, A. Noriega, and M. Cadenas, Effect of Actual WC Content on the Reciprocating Wear of a Laser Cladding NiCrBSi Alloy Reinforced with WC, Wear, 2015, 324–325, p 80-89

    Article  Google Scholar 

  2. K. Van Acker, D. Vanhoyweghen, R. Persoons, and J. Vangrunderbeek, Influence of Tungsten Carbide Particle Size and Distribution on the Wear Resistance of Laser Clad WC/Ni Coatings, Wear, 2005, 258, p 194-202

    Article  Google Scholar 

  3. J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribological Study of NiCrBSi Coating Obtained by Different Processes, Tribol. Int., 2003, 36, p 181-187

    Article  Google Scholar 

  4. P.L. Hurricks, Some Aspects of the Metallurgy and Wear Resistance of Surface Coatings, Wear, 1972, 22, p 291-320

    Article  Google Scholar 

  5. H. Wang, W. Xia, and Y. Jin, A Study on Abrasive Resistance of Ni-Based Coatings with a WC Hard Phase, Wear, 1996, 195, p 47-52

    Article  Google Scholar 

  6. P. Kulu and T. Pihl, Selection Criteria for Wear Resistant Powder Coatings Under Extreme Erosive Wear Conditions, J. Therm. Spray Technol., 2002, 11(4), p 517-522

    Article  Google Scholar 

  7. M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269, p 197-205

    Article  Google Scholar 

  8. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Abrasive Wear Behaviour of Conventional and Nanocomposite HVOF-Sprayed WC-Co Coatings, Wear, 1999, 225–229, p 789-798

    Article  Google Scholar 

  9. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold spray technology, Elsevier, Amsterdam, 2006

    Google Scholar 

  10. Y. Zou, D. Goldbaum, J.A. Szpunar, and S. Yue, Microstructure and Nanohardness of Cold-Sprayed Coatings: Electron Backscattered Diffraction and Nanoindentation Studies, Scripta Mater., 2010, 62, p 395-398

    Article  Google Scholar 

  11. F. Sevillano, P. Poza, C.J. Múnez, S. Vezzú, S. Rech, and A. Trentin, Cold-Sprayed Ni-Al2O3 Coatings for Applications in Power Generation Industry, J. Therm. Spray Technol., 2013, 22–5, p 772-782

    Article  Google Scholar 

  12. J. Wang and J. Villafuerte, Processing and properties of advanced ceramics and composite, Wiley, London, 2009

    Google Scholar 

  13. C.J. Li, G.J. Yang, P.H. Gao, J. Ma, Y.Y. Wang, and C.-X. Li, Characterization of Nanostructured WC-co Deposited by Cold Spraying, J. Therm. Spray Technol., 2007, 16, p 1011-1020

    Article  Google Scholar 

  14. R. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416, p 129-135

    Article  Google Scholar 

  15. P.H. Gao, Y.G. Li, C.J. Li, G.J. Yang, and C.X. Li, Influence of Powder Porous Structure on the Deposition Behavior of Cold-Sprayed WC-12Co Coatings, J. Therm. Spray Technol., 2008, 17, p 742-749

    Article  Google Scholar 

  16. M. Couto, S. Dosta, M. Torrell, J. Fernández, and J.M. Guilemany, Cold Spray Deposition of WC–17 and 12Co Cermets onto Aluminum, Surf. Coat. Technol., 2013, 235, p 54-61

    Article  Google Scholar 

  17. H.J. Kim, C.H. Lee, and S.Y. Hwang, Fabrication of WC-Co Coatings by Cold Spray Deposition, Surf. Coat. Technol., 2005, 191, p 335-340

    Article  Google Scholar 

  18. A. Sova, V.F. Kosarev, A. Papyrin, and I. Smurov, Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings, J. Therm. Spray Technol., 2011, 20(1–2), p 285-291

    Article  Google Scholar 

  19. A. Sova, A. Papyrin, and I. Smurov, Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray, J. Therm. Spray Technol., 2009, 18(5–6), p 633-641

    Article  Google Scholar 

  20. H. Koivuluoto and P. Vuoristo, Effect of Ceramic Particles on Properties of Cold-Sprayed Ni-20Cr + Al2O3 Coatings, J. Therm. Spray Technol., 2009, 18(4), p 555-562

    Article  Google Scholar 

  21. M. Yu, X.K. Suo, W.Y. Li, Y.Y. Wang, and H.L. Liao, Microstructure, Mechanical Property and Wear Performance of Cold Sprayed Al5056/SiCp Composite Coatings: Effect of Reinforcement Content, Appl. Surf. Sci., 2014, 289, p 188-196

    Article  Google Scholar 

  22. O. Meydanoglu, B. Jodoin, and E.S. Kayali, Microstructure, Mechanical Properties and Corrosion Performance of 7075 Al Matrix Ceramic Particle Reinforced Composite Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2013, 235, p 108-116

    Article  Google Scholar 

  23. M. Yu, W.Y. Li, X.K. Suo, and H.L. Liao, Effects of Gas Temperature and Ceramic Particle Content on Microstructure and Microhardness of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2013, 220, p 102-106

    Article  Google Scholar 

  24. P.C. King, S.H. Zahiri, and M.Z. Jahedi, Rare Earth/Metal Composite Formation by Cold Spray, J. Therm. Spray Technol., 2007, 17–2, p 221-227

    Google Scholar 

  25. J.M. Shockley, S. Descartes, P. Vo, E. Irissou, and R.R. Chromik, The Influence of Al2O3 Particle Morphology on the Cold Spray Coating Formation and Dry Sliding Wear Behavior, Surf. Coat. Technol., 2015, 270, p 324-333

    Article  Google Scholar 

  26. D. Lioma, N. Sacks, and I. Bote, Cold Gas Dynamic Spraying of WC-Ni Cemented Carbide Coatings, Int. J. Refract. Metals Hard. Mater., 2015, 49, p 365-373

    Article  Google Scholar 

  27. N.M. Melendez and A.G. McDonald, Development of WC-Based Metal Matrix Composite Coatings Using Low-Pressure Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2013, 214, p 101-109

    Article  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7–6, p 1564-1583

    Article  Google Scholar 

  29. E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16, p 661-668

    Article  Google Scholar 

  30. F. Borcher, T. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064-10070

    Article  Google Scholar 

  31. X.K. Suo, Q.L. Suo, W.Y. Li, M.P. Planche, and H.L. Liao, Effects of SiC Volume Fraction and Particle Size on the Deposition Behavior and Mechanical Properties of Cold-Sprayed AZ91D/SiCp Composite Coatings, J. Therm. Spray Technol., 2014, 23(1–2), p 91-97

    Article  Google Scholar 

  32. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  Google Scholar 

  33. T. Schmidt, H. Assadi, F. Gartner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5–6), p 794-808

    Article  Google Scholar 

  34. L.E. Murr, C.-S. Niou, S. Pappu, J.M. Rivas, and S.A. Quinones, LEDS in Ultra-High Strain-Rate Deformation, Phys. Stat. Sol. A, 1995, 149, p 253-274

    Article  Google Scholar 

  35. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Overview no. 96 Evolution of f.c.c. Deformation Structures in Polyslip, Acta Mater., 1992, 40, p 205-219

    Article  Google Scholar 

  36. H. Burt, J.P. Dennison, and B. Wilshire, Friction Stress Measurements During Creep of Nimonic 105, Mater. Sci., 1979, 13(5), p 295-300

    Google Scholar 

  37. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yueb, E. Irissou, and J.-G. Legoux, Mater. Sci. Eng. A, 2011, 530(1), p 253-265

    Article  Google Scholar 

  38. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  39. M. Grujicic, C. Zhao, W. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    Article  Google Scholar 

  40. H. Getu, J.K. Spelt, and M. Papini, Conditions Leading to the Embedding of Angular and Spherical Particles During the Solid Particle Erosion of Polymers, Wear, 2012, 292–293, p 159-168

    Article  Google Scholar 

  41. B. Daneshian and H. Assadi, Impact Behavior of Intrinsically Brittle Nanoparticles: A Molecular Dynamics Perspective, J. Therm. Spray Technol., 2013, 23(3), p 541-550

    Article  Google Scholar 

  42. E.W. Andrews and K.-S. Kim, Threshold Conditions for Dynamic Fragmentation of Ceramic Particles, Mech. Mater., 1998, 29, p 161-180

    Article  Google Scholar 

  43. A.S.M. Ang, C.C. Berndt, and P. Cheang, Deposition Effects of WC Particle Size on Cold Sprayed WC-Co Coatings, Surf. Coat. Technol., 2011, 205, p 3260-3267

    Article  Google Scholar 

  44. P.H. Gao, C.J. Li, G.J. Yang, Y.G. Li, and C.X. Li, Influence of Substrate Hardness Transition on Built-Up of Nanostructured WC-12Co by Cold Spraying, Appl. Surf. Sci., 2010, 256, p 2263-2268

    Article  Google Scholar 

  45. Y. Zou, W. Qin, E. Irissou, J. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scripta Mater., 2009, 61, p 899-902

    Article  Google Scholar 

  46. M. Couto, S. Dosta, and J.M. Guilemany, Comparison of the Mechanical and Electrochemical Properties ofWC-17 and 12Co Coatings onto Al7075-T6 Obtained by High Velocity Oxy-Fuel and Cold Gas Spraying, Surf. Coat. Technol., 2015, 268, p 180-189

    Article  Google Scholar 

  47. L.-M. Berger et al., Microstructure and Properties of HVOF-Sprayed Chromium Alloyed WC-Co and WC-Ni Coatings, Surf. Coat. Technol., 2008, 202, p 4417-4421

    Article  Google Scholar 

  48. N.M. Melendez, V.V. Narulkar, G.A. Fisher, and A.G. McDonald, Effect of Reinforcing Particles on the Wear Rate of Low-Pressure Cold-Sprayed WC-Based MMC Coatings, Wear, 2013, 306, p 185-195

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Canadian Foundation for Innovation (CFI) project No. 8246 for the cold spray equipment, the CFI Leader’s Opportunity Fund project No. 13029 for the tribometer and nanoindentation equipment, and the Natural Sciences and Engineering Research Council (NSERC) Strategic Grants Program for the operational funding of this project. Thanks, are also due to Tekna Inc for providing the Ni and spherical WC powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Alidokht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alidokht, S.A., Vo, P., Yue, S. et al. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings. J Therm Spray Tech 26, 1908–1921 (2017). https://doi.org/10.1007/s11666-017-0636-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0636-4

Keywords

Navigation