Skip to main content
Log in

Production of Babbitt Coatings by High Velocity Oxygen Fuel (HVOF) Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2017

This article has been updated

Abstract

This work presents HVOF as an alternative means to produce dense Babbitt coatings by thermal spray. A radial injection setup and low fuel flow rates were used to minimize heat transfer to the low melting point alloy. In-flight particle diagnostic systems were used to correlate spray parameters with the changes in particle velocity and thermal radiation intensity. The use of particles with larger diameters resulted in higher deposition efficiencies. It was shown that HVOF Babbitt coatings combine a dense structure and a fine distribution of intermetallic phases when compared to more traditional babbitting techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 30 August 2017

    An erratum to this article has been published.

References

  1. W.P. Bardet and D.J. Wengler, Babbitting, in Surface Engineering, Vol 5, ASM Handbook, ASM International, 1994, p 372-377

  2. E.S. Hedges, Tin in Bearing Alloys, in Tin and its Alloys, Arnold, London, 1960, p 238-295

  3. A. Harnoy, Bearing Design in Machinery: Engineering Tribology and Lubrication, CRC Press, Boca Raton, 2002

    Book  Google Scholar 

  4. J.P. Beaulieu, F. Borit, V. Guipont, M. Jeandin, and C. Mabire, Plasma Spraying of Tin on to a Monocrystalline Lithium Fluoride Window, in Proceedings of the International Thermal Spray Conference, 2001, p 79-85.

  5. N. Pistofidis, G. Vourlias, E. Pavlidou, P. Patsalas, G. Stergioudis, and E.K. Polychroniadis, Study of the Structure and Morphology of Plasma-Sprayed tin Coating, Surf. Coatings Technol., 2006, 200(22), p 6245-6250

    Article  Google Scholar 

  6. G. Vourlias, N. Pistofidis, and G. Stergioudis, Ability of Metallic Coatings to Protect Low Carbon Steels from Aqueous Corrosion, Corros. Sci. Technol., 2008, 43(2), p 163-172

    Article  Google Scholar 

  7. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  8. J. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5), p 619-626

    Article  Google Scholar 

  9. J.F. Li, P.A. Agyakwa, C.M. Johnson, D. Zhang, T. Hussain, and D.G. McCartney, Characterization and Solderability of Cold Sprayed Sn–Cu Coatings on Al and Cu Substrates, Surf. Coatings Technol., 2010, 204(9–10), p 1395-1404

    Article  Google Scholar 

  10. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process.

  11. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals From Powder to Part, Springer, Berlin, 2014

    Book  Google Scholar 

  12. M. Winnicki, A. Baszczuk, M. Rutkowska-Gorczyca, A. Małachowska, and A. Ambroziak, Corrosion Resistance of tin Coatings Deposited by Cold Spraying, Surf. Eng., 2016, 32(9), p 691-700

    Article  Google Scholar 

  13. M.S. Kharasch, Heats of Combustion of Organic Compounds, Bur. Stand. J. Res., 1929, 2(2), p 359

    Article  Google Scholar 

  14. M. Li and P.D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18(5–6), p 753-768

    Article  Google Scholar 

  15. J. Kawakita, T. Fukushima, S. Kuroda, and T. Kodama, Corrosion Behaviour of HVOF Sprayed SUS316L Stainless Steel in Seawater, Corros. Sci., 2002, 44(11), p 2561-2581

    Article  Google Scholar 

  16. J. Kawakita, S. Kuroda, T. Fukushima, and T. Kodama, Corrosion Resistance of HVOF Sprayed HastelloyC Nickel Base Alloy in Seawater, Corros. Sci., 2003, 45(12), p 2819-2835

    Article  Google Scholar 

  17. D. Zois, T. Wentz, R. Dey, S. Sampath, and C.M. Weyant, Simplified Model for Description of HVOF NiCr Coating Properties Through Experimental Design and Diagnostic Measurements, J. Therm. Spray Technol., 2013, 22(2–3), p 299-315

    Article  Google Scholar 

  18. W.B. Hampshire, Tin and Tin Alloys, in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol 2, ASM Handbook, ASM International, 1990, p 517-526

  19. A. McDonald, M. Lamontagne, C. Moreau, and S. Chandra, Impact of Plasma-Sprayed Metal Particles on Hot and Cold Glass Surfaces, Thin Solid Films, 2006, 514(1–2), p 212-222

    Article  Google Scholar 

  20. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals, Springer, Boston, 2014

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Science and Engineering Research Council of Canada (NSERC) and Hydro-Québec for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. C. Nascimento.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11666-017-0626-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, A.R.C., Ettouil, F.B., Moreau, C. et al. Production of Babbitt Coatings by High Velocity Oxygen Fuel (HVOF) Spraying. J Therm Spray Tech 26, 1732–1740 (2017). https://doi.org/10.1007/s11666-017-0615-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0615-9

Keywords

Navigation