Skip to main content

Advertisement

Log in

Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Electrically insulating alumina films were fabricated on steel substrates using supersonic aerosol deposition and their hardness and scratchability were measured. Alumina particles (0.4-μm diameter) were supersonically sprayed inside a low-pressure chamber using between 1 and 20 nozzle passes. These alumina particles were annealed between 300 and 800 K to determine the temperature’s effect on film crystal size (37-41 nm). Smoother surface morphology and increased electrical resistance of the thin films were observed as their thicknesses grew by increasing the number of passes. Resistances of up to 10,000 MΩ demonstrate robust electrical insulation. Significant hardness was measured (1232 hv or 13.33 GPa), but the alumina films could be peeled off with normal loads of 36 and 47 N for films deposited on stainless steel and SKD11 substrates, respectively. High insulation and hardness confirm that these alumina films would make excellent electrical insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, and J.T. Roth, Electrically Assisted Forming, Springer, New York, 2015

  2. M.S. Siopis and B.L. Kinsey, Experimental Investigation of Grain and Specimen Size Effects During Electrical-assisted Forming, J. Manuf. Sci. Eng., 2010, 132(2), p 021004

    Article  Google Scholar 

  3. N. Seto, K. Endo, N. Sakamoto, S. Hirose, and J. Akedo, Hard α-Al2O3 Film Coating on Industrial Roller Using Aerosol Deposition Method, J. Therm. Spray Technol., 2014, 23(8), p 1373-1381

    Article  Google Scholar 

  4. K. Naoe, M. Nishiki, and K. Sato, Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method, J. Therm. Spray Technol., 2014, 23(8), p 1333-1338

    Article  Google Scholar 

  5. K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274

    Article  Google Scholar 

  6. S.-M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method, Jpn. J. Appl. Phys. Part 1, 2004, 43(8R), p 5414

    Article  Google Scholar 

  7. M. Lebedev, J. Akedo, and T. Ito, Substrate Heating Effects on Hardness of an α-Al2O3 Thick Film Formed by Aerosol Deposition Method, J. Cryst. Growth, 2005, 275(1), p e1301-e1306

    Article  Google Scholar 

  8. H.M. Cho and H. Joon Kim, Metal-core Printed Circuit Board with Alumina Layer by Aerosol Deposition Process, IEEE Electron Device Lett, 2008, 29(9), p 991-993

    Article  Google Scholar 

  9. G. Cheney, R. Jacobs, H. Korb, H. Nigh, and J. Stach, Al2O3-SiO2 IGFET Integrated Circuits, IEEE Electron Devices Meeting, 1967, p 16-18

  10. M. Prudenziati, Development and the Implementation of High-Temperature Reliable Heaters in Plasma Spray Technology, J. Therm. Spray Technol., 2008, 17(2), p 234-243

    Article  Google Scholar 

  11. J. Kolodzey, E.A. Chowdhury, T.N. Adam, G. Qui, I. Rau, J.O. Olowolafe, J.S. Suehle, and Y. Chen, Electrical Conduction and Dielectric Breakdown in Aluminum Oxide Insulators on Silicon, Electron Device IEEE, 2000, 47(1), p 121-128

    Article  Google Scholar 

  12. F.-L. Toma, L.-M. Berger, S. Scheitz, S. Langner, C. Rödel, A. Potthoff, V. Sauchuk, and M. Kusnezoff, Comparison of the Microstructural Characteristics and Electrical Properties of Thermally Sprayed Al2O3 Coatings from Aqueous Suspensions and Feedstock Powders, J. Therm. Spray Technol., 2012, 21(3-4), p 480-488

    Article  Google Scholar 

  13. A.A. Bauer and J.L. Bates, Evaluation of Electrical Insulators for Fusion Reactors, Battelle Columbus Labs, Ohio (USA), 1974

    Google Scholar 

  14. M. Nakamichi and H. Kawamura, Out-of-Pile Characterization of Al2O3 Coating as Electrical Insulator, Fusion Eng. Des., 2001, 58-59, p 719-723

    Article  Google Scholar 

  15. J. Akedo and M. Lebedev, Piezoelectric Properties and Poling Effect of Pb(Zr, Ti)O3 Thick Films Prepared for Microactuators by Aerosol Deposition, Appl. Phys. Lett., 2000, 77(11), p 1710-1712

    Article  Google Scholar 

  16. N. Asai, R. Matsuda, M. Watanabe, H. Takayama, S. Yamada, A. Mase, M. Shikida, K. Sato, M. Lebedev, and J. Akedo, Novel High Resolution Optical Scanner Actuated by Aerosol Deposited PZT Films, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, 2003, p 247-250

  17. J. Akedo, M. Lebedev, H. Sato, and J. Park, High-Speed Optical Microscanner Driven with Resonation of Lam Waves using Pb(Zr, Ti)O3 Thick Films Formed by Aerosol Deposition, Jpn. J. Appl. Phys. Part 1, 2005, 44(9B), p 7072-7077

    Article  Google Scholar 

  18. Y. Imanaka, M. Takenouchi, and J. Akedo, Ceramic Dielectric Film for Microwave Filter Deposited at Room Temperature, J. Cryst Growth, 2005, 275(1), p e1313-e1319

    Article  Google Scholar 

  19. S. Sugimoto, K. Haga, M. Nakata, T. Kagotani, K. Inomata, and J. Akedo, Magnetic Properties of Fe/(NiZnCu)Fe2O4 Composite Films Prepared by Aerosol Deposition Method, IEEE Trans. Magn., 2005, 41(10), p 3460-3462

    Article  Google Scholar 

  20. H. Takagi, J. Park, M. Mizoguchi, K. Nishimura, H. Uchida, M. Lebedev, J. Akedo, and M. Inoue, PZT-Driven Micromagnetic Optical Devices, MRS Proceedings, Cambridge Univ Press, 2003, p. D6. 10

  21. J.-J. Park, J.-G. Lee, D.-Y. Kim, J.-H. Hong, J.-J. Kim, S. Hong, and S.S. Yoon, Antibacterial and Water Purification Activities of Self-Assembled Honeycomb Structure of Aerosol Deposited Titania Film, Environ. Sci. Technol., 2012, 46(22), p 12510-12518

    Article  Google Scholar 

  22. J.J. Park, D.Y. Kim, J.G. Lee, D. Kim, J.H. Oh, T.Y. Seong, M.F. Hest, and S.S. Yoon, Superhydrophilic Transparent Titania Films by Supersonic Aerosol Deposition, J. Am. Ceram. Soc., 2013, 96(5), p 1596-1601

    Article  Google Scholar 

  23. J.-J. Park, D.-Y. Kim, J.-G. Lee, Y.-H. Cha, M.T. Swihart, and S.S. Yoon, Supersonic Aerosol-Deposited TiO2 Photoelectrodes for Photoelectrochemical Solar Water Splitting, RSC Adv., 2014, 4(17), p 8661-8670

    Article  Google Scholar 

  24. D.-W. Lee, H.-J. Kim, Y.-N. Kim, M.-S. Jeon, and S.-M. Nam, Substrate Hardness Dependency on Properties of Al2O3 Thick Films Grown by Aerosol Deposition, Surf. Coat. Tech., 2012, 209, p 160-168

    Article  Google Scholar 

  25. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198

    Article  Google Scholar 

  26. D.-W. Lee, H.-J. Kim, Y.-H. Kim, Y.-H. Yun, and S.-M. Nam, Growth Process of α-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition, J. Am. Ceram. Soc., 2011, 94(9), p 3131-3138

    Article  Google Scholar 

  27. D.-W. Lee and S.-M. Nam, Factors Affecting Surface Roughness of Al2O3 Films Deposited on Cu Substrates by An Aerosol Deposition Method, J. Ceram. Process. Res., 2010, 11(1), p 100-106

    Google Scholar 

  28. A. Patterson, The Scherrer Formula for x-ray Particle Size Determination, Phys. Rev., 1939, 56(10), p 978

    Article  Google Scholar 

  29. N.M. Alford and S.J. Penn, Sintered Alumina with Low Dielectric Loss, J. Appl. Phys., 1996, 80(10), p 5895-5898

    Article  Google Scholar 

  30. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, Effect of Porosity and Grain Size on The Microwave Dielectric Properties of Sintered Alumina, J. Am. Ceram. Soc., 1997, 80(7), p 1885-1888

    Article  Google Scholar 

  31. J. Sekler, P. Steinmann, and H. Hintermann, The Scratch Test: Different Critical Load Determination Techniques, Surf. Coat. Tech., 1988, 36(1), p 519-529

    Article  Google Scholar 

  32. S.T. Gonczy and N. Randall, An ASTM Standard for Quantitative Scratch Adhesion Testing of Thin, Hard Ceramic Coatings, Int. J. Appl. Ceram. Technol., 2005, 2(5), p 422-428

    Article  Google Scholar 

  33. Y.-Y. Wang, C.-J. Li, and A. Ohmori, Influence of Substrate Roughness on The Bonding Mechanisms of High Velocity Oxy-fuel Sprayed Coatings, Thin Solid Films, 2005, 485(1), p 141-147

    Article  Google Scholar 

  34. E. Söderlund, I. Reineck, and D. Rowcliffe, Ultralow Load Indentation Hardness and Modulus of K- and α-Al2O3 CVD Coatings, J. Mater. Res., 1994, 9(07), p 1683-1692

    Article  Google Scholar 

  35. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89(6), p 1834-1839

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Human Resources Development program (No. 20124030200120) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy and by NRF-2013R1A2A2A05005589. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding this Prolific Research group (PRG-1436-03). The authors are grateful for the financial support made by MS Autotech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam S. Yoon.

Additional information

Jong-Gun Lee and You-Hong Cha have equally contributed as the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JG., Cha, YH., Kim, DY. et al. Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition. J Therm Spray Tech 24, 1046–1051 (2015). https://doi.org/10.1007/s11666-015-0257-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0257-8

Keywords

Navigation