Skip to main content
Log in

Simulation of Motion, Heating, and Breakup of Molten Metal Droplets in the Plasma Jet at Plasma-Arc Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The mathematical model for the process of plasma-arc wire spraying is proposed, which describes behavior of molten metal droplets in the plasma jet, allowing for the processes of their deformation and gas-dynamic breakup. Numerical analysis of the processes of motion, heating, and breakup of molten metal droplets, detached from the sprayed wire at plasma-arc spraying of coatings, was performed. It is shown that during molten droplets movement in the plasma jet their multiple breakup takes place, leading to formation of sprayed particles with dimensions much smaller than dimensions of initial droplets, detached from the sprayed wire tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Pawlowski, Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, New York, 2008

    Book  Google Scholar 

  2. R.I. Nigmatulin, Dynamics of Multiphase Media, Vol 1, Taylor & Francis, Philadelphia, 1990

    Google Scholar 

  3. Yu.S. Borisov, I.V. Krivtsun, A.F. Muzhichenko, E. Lugscheider, and U. Eritt, Computer Modelling of the Plasma Spraying Process, Paton Weld. J., 2000, 12, p 40-50

    Google Scholar 

  4. K. Remesh, S.C.M. Yu, H.W. Ng, and C.C. Berndt, Computational Study and Experimental Comparison of the In-flight Particle Behavior for an External Injection Plasma Spray Process, J. Therm. Spray Technol., 2003, 12(4), p 508-522

    Article  Google Scholar 

  5. H.-P. Li and X. Chen, Three-dimensional Simulation of a Plasma Jet with Transverse Particle and Carrier Gas Injection, Thin Solid Films, 2001, 390, p 175-180

    Article  Google Scholar 

  6. Yu.S. Borisov, A.S. Zatserkovny, and I.V. Krivtsun, Mathematical Modelling of the Process of Plasma Spraying of Composite Powders Allowing for the Exothermic Reaction of Synthesis of Coating Material, Paton Weld. J., 2004, 1, p 22-24

    Google Scholar 

  7. Yu. Borisov, A. Bushma, and I. Krivtsun, Modeling of Motion and Heating of Powder Particles in Laser, Plasma, and Hybrid Spraying, J. Therm. Spray Technol., 2006, 15(4), p 553-558

    Article  Google Scholar 

  8. Yu.S. Korobov, V.N. Boronenkov, Pacчeт пapaмeтpoв движeния, нaгpeвa и oкиcлeния чacтиц пpи элeктpoдyгoвoй мeтaллизaции (Calculation of the parameters of movement, heating and oxidation of particles at electric-arc metalizing), Svarochnoje proizvodstvo, 1998, No 9, p 9-13. (in Russian)

  9. M.Yu. Kharlamov, I.V. Krivtsun, V.N. Korzhik, and S.V. Petrov, Formation of Liquid Metal Film at the Tip of Wire-anode in Plasma-arc Spraying, Paton Weld. J., 2011, 12, p 2-6

    Google Scholar 

  10. M.Yu. Kharlamov, I.V. Krivtsun, and V.N. Korzhyk, Dynamic Model of the Wire Dispersion Process in Plasma-Arc Spraying, J. Therm. Spray Technol., 2014, 23(3), p 420-430

    Article  Google Scholar 

  11. E. Pfender and C.H. Chang, Plasma Spray Jets and Plasma-Particulate Interaction: Modeling and Experiments, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, Materials Park, 1998, p 315-327.

  12. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd ed. (Course of Theoretical Physics, Vol. 6), Butterworth-Heinemann, Boston, 1987

  13. R. Schmehl, Advanced Modeling of Droplet Deformation and Breakup for CFD Analysis of Mixture Preparation, ILASS-Europe 2002, September 9-11, 2002 (Zürich, Schweiz), ILASS, 2002, p 1-10. http://www.ilasseurope.org/ICLASS/ilass2002/papers/012.pdf)

  14. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Droplets, and Particles, Dover Publications, New York, 2005

  15. B.J. O’Donnel and B.T. Helenbrook, Drag on Ellipsoids at Finite Reynolds Number, Atomization Sprays, 2005, 15(4), p 363-376

    Article  Google Scholar 

  16. E.E. Michaelides, Particles, Bubbles and Droplets: Their Motion, Heat And Mass Transfer, World Scientific Publ., New Jersey, 2006

  17. A.A. Samarskii and B.D. Moiseyenko, An Economic Continuous Calculation Scheme for the Stefan Multidimensional Problem, USSR Comput Math. Math. Phys., 1965, 5(5), p 43-58

    Article  Google Scholar 

  18. S.S. Kutateladze, Fundamentals of Heat Transfer, Academic Press, New York, 1963

  19. S.V. Dresvin, A.V. Donskoj, V.M. Goldfarb, and V.S. Klubnikin, Физикa и тexникa низкoтeмпepaтypнoй плaзмы (Physics and Technology of Low-temperature Plasma), Atomizdat, 1972 (in Russian)

  20. Ch.J. Knight, Theoretical Modeling of Rapid Surface Vaporization with Back Pressure, AIAA J., 1979, 17(5), p 519-523

    Article  Google Scholar 

  21. A.M. Podvisotskii, V.V. Dubrovskii, Кpитичecкиe ycлoвия paзpyшeния кaпeль гaзoвым пoтoкoм (Critical Conditions of Droplet Breakup by Gas Flow), Phys. Aerodispersed Syst, 1998, 37, p 32-37, (in Russian). http://phys.onu.edu.ua/files/journals/fas/articles/37/fas37_podvisockiy.pdf

  22. M. Pilch and C.A. Erdman, Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-induced Breakup of Liquid Droplet, Int. J. Multiphase Flow, 1987, 13, p 741-757

    Article  Google Scholar 

  23. M.Yu. Kharlamov, I.V. Krivtsun, and V.N. Korzhyk, Numerical Simulation of Movement, Heating and Breakup of Particles, Formed at Wire Dispersion Under the Conditions of Plasma-arc Spraying, Mathematical Modeling and Information Technologies in Welding and Related Processes: Proceedings of 6th Intern. Conf., V.I. Makhnenko, Ed., May 29-June 1, 2012, (Katsiveli, Crimea, Ukraine), E.O. Paton Electric Welding Institute of the NAS of Ukraine, 2012, p 147-155

  24. D.R. Guildenbecher, C. López-Rivera, and P.E. Sojka, Secondary Atomization, Exp. Fluids, 2009, 46(3), p 371-402

    Article  Google Scholar 

  25. C. Lasheras, C. Eastwood, C. Martinez-Bazán, and J.L. Montañés, A Review of Statistical Models for the Break-up of an Immiscible Fluid Immersed into a Fully Developed Turbulent Flow, Int. J. Multiphase Flow, 2002, 28(2), p 247-278

    Article  Google Scholar 

  26. J.M. Marchetti, L.E. Patruno, H.A. Jakobsen, and H.F. Svendsen, Mathematical Framework for Higher Order Breakage Scenarios, Chem. Eng. Sci., 2010, 65, p 5881-5886

    Article  Google Scholar 

  27. R. Andersson and B. Andersson, On the Breakup of Fluid Particles in Turbulent Flows, AIChE J., 2006, 52(6), p 2020-2030

    Article  Google Scholar 

  28. H. Bahmanyar and M.J. Slater, Studies of Droplet Break-up in Liquid-Liquid Systems in a Rotating Disc Contactor. Part I: Condition of no Mass Transfer, Chem. Eng. Technol., 1991, 14, p 79-89

    Article  Google Scholar 

  29. P.J. Hill and K.M. Ng, Statistics of Multiple Particle Breakage, AIChE J., 1996, 42(6), p 1600-1611

    Article  Google Scholar 

  30. M.Yu. Kharlamov, I.V. Krivtsun, V.N. Korzhik, S.V. Petrov, and A.I. Demianov, Mathematical Model of Arc Plasma Generated by Plasmatron with Anode Wire, Paton Weld. J., 2007, 12, p 9-14

    Google Scholar 

  31. J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc, Int. J Heat Mass Transfer, 2007, 50(5–6), p 833-846

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kharlamov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlamov, M.Y., Krivtsun, I.V., Korzhyk, V.N. et al. Simulation of Motion, Heating, and Breakup of Molten Metal Droplets in the Plasma Jet at Plasma-Arc Spraying. J Therm Spray Tech 24, 659–670 (2015). https://doi.org/10.1007/s11666-015-0216-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0216-4

Keywords

Navigation