Skip to main content
Log in

Microstructural Characterization and Strengthening-Toughening Mechanism of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, Al2O3, Cr2O3, and Al2O3-Cr2O3 coatings were fabricated by plasma spraying. X-ray diffraction was employed to determine the phase composition of powders and coatings. The morphologies and microstructures of the coatings were characterized using electron probe microanalyzer and transmission electron microscopy. Vickers hardness, fracture toughness, and bending strength of the coatings were measured. Al2O3-Cr2O3 composite coatings show better comprehensive mechanical properties than the individual Al2O3 and Cr2O3 coatings, which are attributed to the former's larger intersplat adhesion or interlamellar cohesion and lower porosity. Solid solution strengthens the phase interfaces and grain boundaries, which is beneficial to improve the mechanical performance of the composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Zois, A. Lekatou, M. Vardavoulias, and A. Vazdirvanidis, Nanostructured Alumina Coatings Manufactured by Air Plasma Spraying: Correlation of Properties with the Raw Powder Microstructure, J. Alloy. Compd., 2010, 495(2), p 611-616

    Article  CAS  Google Scholar 

  2. Ch.I. Sarafoglou, D.I. Pantelis, S. Beauvais, and M. Jeandin, Study of Al2O3 Coatings on AISI, 316 Stainless Steel Obtained by Controlled Atmosphere Plasma Spraying (CAPS), Surf. Coat. Technol., 2007, 202(1), p 155-161

    Article  CAS  Google Scholar 

  3. K. Maiti and A. Sil, Relationship Between Fracture Toughness Characteristics and Morphology of Sintered Al2O3 Ceramics, Ceram. Int., 2010, 36(8), p 2337-2344

    Article  CAS  Google Scholar 

  4. Z. Yin, S. Tao, X. Zhou, and C. Ding, Particle In-Flight Behavior and its Influence on the Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3 Coatings, J. Eur. Ceram. Soc., 2008, 28(6), p 1143-1148

    Article  CAS  Google Scholar 

  5. N.N. Ault, Characteristics of Refractory Oxide Coatings Produced by Flame-Spraying, J. Am. Ceram. Soc., 1957, 40(3), p 69-74

    Article  CAS  Google Scholar 

  6. R. McPherson, Formation of Metastable Phases in Flame-Prepared and Plasma-Prepared Alumina, J. Mater. Sci., 1973, 8(6), p 851-858

    Article  CAS  Google Scholar 

  7. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39(1-3), p 173-181

    Article  Google Scholar 

  8. E. Celik, A.S. Demirkiran, and E. Avci, Effect of Grit Blasting of Substrate on the Corrosion Behaviour of Plasma-Sprayed Al2O3 Coatings, Surf. Coat. Technol., 1999, 116-119, p 1061-1064

    Article  CAS  Google Scholar 

  9. D. Yan, J. He, J. Wu, W. Qiu, and J. Ma, The Corrosion Behaviour of a Plasma Spraying Al2O3 Ceramic Coating in Dilute HC1 Solution, Surf. Coat. Technol., 1997, 89(1-2), p 191-195

    Article  CAS  Google Scholar 

  10. G.N. Heintze and S. Uematsu, Preparation and Structures of Plasma-Sprayed γ- and α-Al2O3 Coatings, Surf. Coat. Technol., 1992, 50(3), p 213-222

    Article  CAS  Google Scholar 

  11. R. Krishnan, S. Dash, R. Kesavamoorthy, C. Babu Rao, A.K. Tyagi, and B. Raj, Laser Surface Modification and Characterization of Air Plasma Sprayed Alumina Coatings, Surf. Coat. Technol., 2006, 200(8), p 2791-2799

    Article  CAS  Google Scholar 

  12. S. Liscano, L. Gil, and M.H. Staia, Effect of Sealing Treatment on the Corrosion Resistance of Thermal-Sprayed Ceramic Coatings, Surf. Coat. Technol., 2004, 188-189, p 135-139

    Article  CAS  Google Scholar 

  13. P.K. Chu, Applications of Plasma-Based Technology to Microelectronics and Biomedical Engineering, Surf. Coat. Technol., 2009, 203(17-18), p 2793-2798

    Article  CAS  Google Scholar 

  14. H. Ageorges and P. Ctibor, Comparison of the Structure and Wear Resistance of Al2O3-13wt.%TiO2 Coatings Made by GSP and WSP Plasma Process with Two Different Powders, Surf. Coat. Technol., 2008, 202(18), p 4362-4368

    Article  CAS  Google Scholar 

  15. W. Tian, Y. Wang, Y. Yang, and C. Li, Toughening and Strengthening Mechanism of Plasma Sprayed Nanostructured Al2O3-13wt.%TiO2 Coatings, Surf. Coat. Technol., 2009, 204(5), p 642-649

    Article  CAS  Google Scholar 

  16. R. Venkataraman and R. Krishnamurthy, Evaluation of Fracture Toughness of as Plasma Sprayed Alumina-13wt.% Titania Coatings by Micro-Indentation Techniques, J. Eur. Ceram. Soc., 2006, 26(15), p 3075-3081

    Article  CAS  Google Scholar 

  17. P. Chraska, J. Dubsky, K. Neufuss, and J. Pisacka, Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol., 1997, 6(3), p 320-326

    Article  CAS  Google Scholar 

  18. B.R. Marple, J. Voyer, and P. Béchard, Sol Infiltration and Heat Treatment of Alumina-Chromia Plasma-Sprayed Coatings, J. Eur. Ceram. Soc., 2001, 21(7), p 861-868

    Article  CAS  Google Scholar 

  19. C.C. Stahr, S. Saaro, L.-M. Berger, J. Dubský, K. Neufuss, and M. Herrmann, Dependence of the Stabilization of Alpha-Alumina on the Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 822-830

    Article  CAS  Google Scholar 

  20. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  CAS  Google Scholar 

  21. J.J. Kruzic and R.O. Ritchie, Determining the Toughness of Ceramics from Vickers Indentations Using the Crack-Opening Displacements: An Experimental Study, J. Am. Ceram. Soc., 2003, 86(8), p 1433-1436

    Article  CAS  Google Scholar 

  22. G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear Behaviour of Thermally Sprayed Ceramic Oxide Coatings, Wear, 2006, 261(11-12), p 1298-1315

    Article  CAS  Google Scholar 

  23. R. Dhiman, A.G. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201(18), p 7789-7801

    Article  CAS  Google Scholar 

  24. S. Widjaja, A.M. Limarga, and T.H. Yip, Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating, Thin Solid Films, 2003, 434(1-2), p 216-227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is jointly supported by 2011 Innovation Fund of SICCAS (Y25ZC6160G), China Postdoctoral Science Foundation (20100480039), Shanghai Postdoctoral Science Foundation (11R21416800), and Chinese Academy of Sciences K.C.Wong Post-doctoral Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Feng, J., Zhou, X. et al. Microstructural Characterization and Strengthening-Toughening Mechanism of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings. J Therm Spray Tech 21, 1011–1024 (2012). https://doi.org/10.1007/s11666-012-9796-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9796-4

Keywords

Navigation