Skip to main content
Log in

Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, aluminum alloy Al-5Fe-V-Si (in wt.%) feedstock powder, produced by rapid solidification (RS) using the gas atomization process, was selected to produce high-temperature resistant Al-alloy coatings using the cold gas dynamic spraying process (CGDS). The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal-combustion (IC) engines. The CGDS spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original phases of the feedstock powder to be preserved within the coatings. The microstructure and phases stability was investigated by means of Scanning Electron Microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetery techniques. The coatings mechanical properties were evaluated through bond strength and microhardness testing. The study revealed the conservation of the complex microstructure of the rapid solidified powder during the spray process. Four distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si) x (Fe,V) Micro-quasicrystalline Icosahedral (MI) phase. Aging of the coating samples was performed and confirmed that the phase transformation of the metastable phases and coarsening of the nanosized precipitates will occurs at around 400 °C. The metastable MI phase was determined to be thermally stable up to 390 °C, after which a phase transformation to silicide starts to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I. Taymaz, K. Çakir, and A. Mimaroglu, Experiment Study of Effective Efficiency in a Ceramic Coated Diesel Engine, Surf. Coat. Technol., 2005, 200, p 1182-1185

    Article  CAS  Google Scholar 

  2. N.A. Belov, A.A. Aksenov, and D.G. Eskin, Iron in Aluminum Alloys: Impurity and Alloying Element, Chap. 4, Taylor & Francis, London, 2002

  3. V.I. Dobatkin, V.I. Yelagin, and V.M. Fedorov, Bystrozakristalliozovannye alyuminievye splavy. VILS, Moscow, 1995 (in Russian).

  4. V.R.V. Ramanan, D.J. Skinner, M.S. Zedalis, and N.J. Kim, Stability of Quasicrystalline Phases in Al-Fe-V Alloys, Mater Sci. Eng., 1988, 99, p 407-411

    Article  Google Scholar 

  5. A. Alkhimov, V. Kosarev, and A. Papyrin, Gas Dynamic Method for Applying Coating, U.S. Patent 5,302,414, 1994

  6. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principle of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  CAS  Google Scholar 

  7. L. Ajdelsztajn, B. Jodoin, G.E. Kim, J. Schoenung, and J. Mondoux, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36, p 657-666

    Article  Google Scholar 

  8. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 1(4), p 542-550

    Article  Google Scholar 

  9. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  CAS  Google Scholar 

  10. L. Ajdelsztajn, A. Zuniga, B. Jodoin, and E.J. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf. Coat. Technol., 2006, 201(6), p 2109-2116

    Article  CAS  Google Scholar 

  11. B. Jodoin, Mach Number Limitation in Cold Spray, J. Therm. Spray Technol., 2002, 11(4), p 496-507

    Article  Google Scholar 

  12. DPV-2000, Reference Manual Rev. 5.0. Tecnar Automation Ltd., Canada.

  13. E. Buyukaya, Thermal Analysis of Functionally Graded AlSi and Steel Pistons, Surf. Coat. Technol., 2008, 202(16), p 3856-3865

    Article  Google Scholar 

  14. ASTM C 633-01, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, ASTM Standards Handbook, West Conshohocken, 2001.

  15. E.J. Lavernia, J.D. Ayers, and T.S. Srivatsan, Rapid Solidification Processing with Specific Application to Al Alloys, Int. Mater. Rev., 1992, 37(1), p 1-41

    Article  CAS  Google Scholar 

  16. R.G. Maev and V. Leshchynsky, Air Gas Dynamic Spraying of Powder Mixtures: Theory and Application, J. Therm. Spray Technol., 2006, 15(2), p 198-205

    Article  CAS  Google Scholar 

  17. R. Tongsri, E.J. Minay, R.P. Thackray, R.J. Dashwood, and H.B. McShane, Microstructure and Their Stability in Rapidly Solidified Al-Fe-(V, Si) Alloy Powders, J. Mater. Sci., 2000, 36, p 1845-1856

    Article  Google Scholar 

  18. A.N. Papyrin, V.F. Kosarev, S.V. Klinkov, and A.P. Alkhimov, On the Interaction of High Speed Particles with a Substrate Under Cold Spraying, International Thermal Spray Conference Proceeding, Essen, Germany, 2002, p 380-84.

  19. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  CAS  Google Scholar 

  20. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  21. T.S. Price, P.H. Shipway, D.G. McCartney, E. Calla, and D. Zhang, J. Therm. Spray Technol., 2007, 16(4), p 566-570

    Article  CAS  Google Scholar 

  22. E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16, p 661-668

    Article  CAS  Google Scholar 

  23. K. Sugiyama, N. Kaji, and K. Hiraga, Acta Crystallogr., 1998, C54, p 445-452

    CAS  Google Scholar 

  24. D.J. Skinner, R.L. Rye, D. Raybould, and A.M. Brown, Scr. Metallur., 1986, 20, p 867

    Article  CAS  Google Scholar 

  25. S. Hariprasad, S.M. Sastry, and K.L. Jerina, J. Mater. Sci., 1996, 31, p 921-922

    Article  CAS  Google Scholar 

  26. S. Yaneva, A. Kalkanl, K. Petrov, R. Petrov, Ir. Yvan Houbaert, and S. Kassabov, Mater.Sci. Eng. A, 2004, 373, p 90-98

    Article  Google Scholar 

  27. M. Cooper, Acta Crystallogr., 1967, 23, p 1106-1112

    Article  Google Scholar 

  28. L.A. Bendersky, M.J. Kaufman, W.J. Boettinger, and F.S. Biancaniello, Mater. Sci. Eng., 1988, 98, p 213-221

    Article  CAS  Google Scholar 

  29. W.J. Park, S. Ahn, and N.J. Kim, Mater. Sci. Eng., 1994, A189, p 291-299

    CAS  Google Scholar 

  30. C.R.C. Lima and J.M. Guilemany, Adhesion Improvements of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats, Surf. Coat. Technol., 2007, 201, p 4694-4701

    Article  CAS  Google Scholar 

  31. C.R.C. Lima and R. da Exaltação Trevisan, Temperature Measurements and Adhesion Properties of Plasma Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol, 1999, 8(2), p 323-327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yandouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bérubé, G., Yandouzi, M., Zúñiga, A. et al. Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials. J Therm Spray Tech 21, 240–254 (2012). https://doi.org/10.1007/s11666-011-9716-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9716-z

Keywords

Navigation