Skip to main content
Log in

An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

During cold spraying (CS), heat exchange between the hot driving gas and the solid bodies, e.g., spray nozzle and substrate, results in the temperature redistribution within the solid bodies. In this study, numerical and experimental investigations on the heating behavior of the substrate and nozzle wall were conducted to clarify the temperature distribution within the solid bodies in CS. The results show that after heating by the hot gas, the highest temperature presents at the center point of the substrate and decreases toward the substrate back surface and edge. With increasing standoff distance or decreasing inlet temperature, the substrate temperature decreases gradually, but the temperature gradient within the substrate changes little. The numerical results are consistent with the experimental measurements. Besides, it is also found that increasing the substrate size (diameter) can lead to the gradual increment in the substrate temperature. Moreover, the numerical study on the temperature distribution within the nozzle wall reveals that the highest temperature presents at the throat section of the nozzle and that the nozzle material significantly affects the temperature distribution within the nozzle wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    CAS  Google Scholar 

  2. M. Grujicic, C.-L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  CAS  Google Scholar 

  3. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  4. M. Grujicic, J.R. Saylora, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3/4), p 211-227

    Article  CAS  Google Scholar 

  5. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  CAS  Google Scholar 

  6. A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10(2), p 375-381

    Article  Google Scholar 

  7. W.-Y. Li and C.-J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14(3), p 391-396

    Article  CAS  Google Scholar 

  8. W.-Y. Li, H. Liao, H.-T. Wang, C.-J. Li, G. Zhang, and C. Coddet, Optimal Design of Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253(2), p 708-713

    Article  CAS  Google Scholar 

  9. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11(4), p 496-507

    Article  Google Scholar 

  10. J. Pattison, S. Celotto, A. Dhan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454

    Article  CAS  Google Scholar 

  11. M. Grujicic, W.S. DeRosset, and D. Helfritch, Flow Analysis and Nozzle-Shape Optimization for the Cold-Gas Dynamic-Spray Process, Proc. Inst. Mech. Eng., 2003, 217(11), p 1603-1613

    Article  Google Scholar 

  12. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-555

    Article  CAS  Google Scholar 

  13. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18(1), p 110-117

    Article  CAS  Google Scholar 

  14. T.-C. Jen, L.-J. Li, W.-Z. Cui, Q.-H. Chen, and X.-M. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Transf., 2005, 48(21-22), p 4384-4396

    Article  CAS  Google Scholar 

  15. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5-6), p 634-642

    Article  Google Scholar 

  16. S. Yin, X.-F. Wang, W.-Y. Li, and B.-P. Xu, Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity, Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD, J. Therm. Spray Technol., 2010, 19(6), p 1155-1162

    Article  Google Scholar 

  17. S. Yin, X.-F. Wang, and W.-Y. Li, Computational Analysis of the Effect of Nozzle Cross-Section Shape on Gas Flow and Particle Acceleration in Cold Spraying, Surf. Coat. Technol., 2011, 205(8-9), p 2970-2977

    Article  CAS  Google Scholar 

  18. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 643-650

    Article  CAS  Google Scholar 

  19. J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626

    Article  CAS  Google Scholar 

  20. S. Yin, X.-F. Wang, W.-Y. Li, and X.-P. Guo, Examination on Substrate Pre-Heating Process in Cold Gas Dynamic Spraying, J. Therm. Spray Technol., in press, doi:10.1007/s11666-011-9623-3

  21. FLUENT Inc., FLUENT User’s Guider, NH, 2

  22. R. Nickel, K. Bobzin, E. Lugscheider, D. Parkot, W. Varava, H. Olivier, and X. Luo, Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 729-735

    Article  Google Scholar 

  23. T. Han, B.A. Gillispie, and Z.B. Zhao, An Investigation on Powder Injection in the High-Pressure Cold Spray Process, J. Therm. Spray Technol., 2009, 18(3), p 320-330

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support from the Aoxiang Star Project of NPU, and the Program for the New Century Excellent Talents in University by the Ministry of Education of the People’s Republic of China (NCET-08-0463). The project was also sponsored by the Research Fund of the State Key Laboratory of Solidification Processing (NPU, China) (Grant No. 69-QP-2011), the National Natural Science Foundation of China (51005180) and the 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ya Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WY., Yin, S., Guo, X. et al. An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods. J Therm Spray Tech 21, 41–48 (2012). https://doi.org/10.1007/s11666-011-9685-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9685-2

Keywords

Navigation