Skip to main content
Log in

Theoretical and Experimental Investigation of Gas Flows, Powder Transport and Heating in Coaxial Laser Direct Metal Deposition (DMD) Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The results of theoretical and experimental investigations of direct metal deposition (DMD) processes involving a CO2-laser with the power up to 5 kW and wave length of 10.6 μm are presented. The physical and mathematical model of multi-layer gas flows with gas-jet transportation of metal powder particles has been developed. To simulate the flows of carrier and shaping gases in annular channels of a triple coaxial nozzle, Navier-Stokes equations were applied for an axisymmetric flow. Thermodynamics and powder particles transport are calculated from a discrete-trajectory model with due regard to particle collision with solid walls of the transport nozzle. It is shown that particles may overheat on their way between the nozzle and substrate; the overheating depends on the trajectories by which particles move, on their size, and time of their retention in the laser-radiation region. The results of performed experimental researches on DMD processes visualization are presented. Some results of numerical simulation and experimental data are compared and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

t :

time

{xy} or {x α, α = 1, 2}:

cylindrical system of coordinates

p, ρ, T, μ, λ:

gas pressure, density, temperature, viscosity, and thermal conductivity

\( \vec{V} \), V:

velocity vector and absolute value of the velocity vector of the gas

uα or uv:

gas velocity in the x α or x, y directions, respectively

\( \vec{n},\,\vec{\uptau } \) :

normal and tangential vectors

\( \uptau_{ij} = \upmu \left( {{\frac{{\partial u_{i} }}{{\partial x_{j} }}} + {\frac{{\partial u_{j} }}{{\partial x_{i} }}} - \frac{2}{3}\updelta_{ij} {\frac{{\partial u_{k} }}{{\partial x_{k} }}}} \right) \) :

viscosity stress tensor; \( \updelta_{ij} = \left\{ \begin{gathered} \begin{array}{*{20}c} {0,} & {i \ne j} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {1,} & {i = j} \\ \end{array} \hfill \\ \end{gathered} \right.; \)

Re, Pr, Nu :

Reynolds, Prandtl, and Nusselt numbers

c p , c v ,:

heat capacity at constant pressure and constant volume, respectively

γ = c p /c v :

the ratio of specific heats

R :

gas constant

Ee:

gas total energy and internal energy, respectively

\( \Upphi = \uptau_{ij} {\frac{{\partial u_{i} }}{{\partial x_{j} }}} \) :

dissipative function

\( q = - \uplambda \nabla T \) :

a heat flux

g :

acceleration of gravity

σ:

Boltzmann constant

A ab :

coefficient of laser radiation absorption

I(x, y):

laser radiation intensity

C d :

drag coefficient

Gn, Gs, Gc:

flow rate of nozzle, shaping, and carrier gas

r :

radius

φ:

nonsphericity degree of a particle

0:

initial value

p:

particle

s:

solid

m:

liquid or melting

g:

gas

n, τ:

normal and tangential components

References

  1. D. Lepski and F. Bruckner, Laser Cladding, The Theory of Laser Materials Processing (Heat and Mass Transfer in Modern Technology). Springer Series in Material Science 119, J.M. Dowden, Ed., Springer, Canopus Academic Publishing, 2009

  2. S. Angel, E. Ratte, W. Bleck, K. Bobzin, E. Lugscheider, R. Nickel, K. Richardt, N. Bagcivan, K. Walther, E.W. Kreutz, I. Kelbassa, and R. Poprawe, Open Porous Metallic Foams with Thermal Barrier Coating and Cooling Hole Array for High Temperature Turbine Applications, High Temp. Mater. Process., 2007, 11(3), p 321-343

    Article  CAS  Google Scholar 

  3. S. Nowotny, S. Scharek, E. Beyer, and K.-H. Richter, Laser Beam Build-Up Welding: Precision in Repair, Surface Cladding, and Direct 3D Metal Deposition, J. Therm. Spray Tech., 2007, 16(3), p 334-348

    Google Scholar 

  4. I. Smurov, Laser Cladding and Laser Assisted Direct Manufacturing, Surf. Coat. Technol., 2008, 202, p 4496-4502

    Article  CAS  Google Scholar 

  5. C.-Y. Liu and J. Lin, Thermal Processes of a Powder Particle in Coaxial Laser Cladding, Optics Laser Technol., 2003, 35, p 81-86

    Article  Google Scholar 

  6. L. Han, F.W. Liou, and K.M. Phatak, Modeling of Laser Cladding with Powder Injection, Metall. Mater. Trans. B, 2004, 35B, p 1139-1150

    Article  CAS  Google Scholar 

  7. J. Choi, L. Han, and Y. Hua, Modeling and Experiments of Laser Cladding with Droplet Injection, Trans. ASME, 2005, 127, p 978-986

    Article  CAS  Google Scholar 

  8. H. Pan and F. Liou, Numerical Simulation of Metallic Powder Flow in a Coaxial Nozzle for the Laser Aided Deposition Process, J. Mater. Process. Technol., 2005, 168, p 230-244

    Article  CAS  Google Scholar 

  9. H. Qia, J. Mazumder, and H. Ki, Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition, J. Appl. Phys., 2006, 100, p 024903. doi:10.1063/1.2209807

    Article  Google Scholar 

  10. S. Zekovic, R. Dwivedi, and R. Kovacevic, Numerical Simulation and Experimental Investigation of Gas-powder Flow from Radially Symmetrical Nozzles in Laser-Based Direct Metal Deposition, Int. J. Mach. Tools Manuf., 2007, 47, p 112-123

    Article  Google Scholar 

  11. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, Analytical and Numerical Modeling of the Direct Metal Deposition Laser Process, J. Phys. D: Appl. Phys., 2008, 41, p 025403 (10 pp)

    Google Scholar 

  12. N.N. Yanenko et al., Economical Methods for Solving the Problems of Gas Dynamics, Lect. Notes Phys., 1981, 141, p 448-453

    Article  Google Scholar 

  13. X.-D. Liu, S. Osher, and T. Chan, Weighted Essentially Non-Oscillatory Schemes, J. Comput. Phys., 1994, 115, p 200-212

    Article  Google Scholar 

  14. P. Taheri and C. Dehghanian, A Phenomenological Model of Nanocrystalline Coating Production Using the Plasma Electrolytic Saturation (PES) Technique, Trans. B: Mech. Eng., 2009, 16(1), p 87-91

    CAS  Google Scholar 

  15. M.V. Kravtsov, Resistance to the Free Steady-State Motion of a Sphere in a Viscous Medium, J. Eng. Phys., 1968, 15(3), p 464-470

    Google Scholar 

  16. H.-P. Li, X. Chen, Plasma. Three-Dimensional Modeling of the Turbulent Plasma Jet Impinging upon a Flat Plate and with Transverse Particle and Carrier-Gas Injection, Chem. Plasma Process., 2002, 22(1), p 27-58

    Google Scholar 

  17. A. Haider and O. Levenspiel, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Powder Technol., 1989, 58(1), p 63-70

    Article  CAS  Google Scholar 

  18. M. Sommerfeld and N. Huber, Experimental Analysis and Modeling of Particle-Wall Collisions, Int. J. Multiph. Flow, 1999, 25(6/7), p 1457-1489

    Article  CAS  Google Scholar 

  19. B.V.R. Vittal and W. Tabakoff, Two-Phase Flow Around a Two-Dimensional Cylinder, AIAA J., 1987, 25(5), p 648-654

    Article  CAS  Google Scholar 

  20. M. Doubenskaya, Ph. Bertrand, and I. Smurov, Optical Monitoring of Nd:YAG Laser Cladding, Thin Solid Films, 2003, 453-454C, p 447-485

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Russian Foundation for Basic Research (Grant No. 08-08-00238_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Kovalev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalev, O.B., Zaitsev, A.V., Novichenko, D. et al. Theoretical and Experimental Investigation of Gas Flows, Powder Transport and Heating in Coaxial Laser Direct Metal Deposition (DMD) Process. J Therm Spray Tech 20, 465–478 (2011). https://doi.org/10.1007/s11666-010-9539-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9539-3

Keywords

Navigation