Skip to main content
Log in

Numerical Study of the Plasma Flow Field and Particle In-flight Behavior with the Obstruction of a Curved Substrate

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A three-dimensional numerical model is developed using computational fluid dynamics software FLUENT v6.3.26 to investigate the influence of curved substrate on the plasma flow fields and subsequent in-flight particle behavior. The curved substrates have two different dimensional shapes and are positioned in two orientations (convex or concave). It is found that inclusion of the substrates with different shapes in different directions significantly affects the plasma flow fields at the vicinity of the substrate, although the most upstream region of the plasma field remains unaffected. Plasma temperature and velocity contours and flow vectors in the computational domain, especially at regions near substrates are presented. Investigations on the size effect on the in-flight particle parameters are carried out, which show that smaller particles tend to acquire higher velocities and temperatures. Moreover, smaller particles are more susceptible to the flow change by the substrate inclusion. However, for the size range of the zirconia feedstock we used later, there is no obvious effect of the substrate inclusion on the particle distribution on the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

a :

empirical constant (9.81)

A p :

surface area of the particle (m2)

C :

specific heat capacity (J/kg K)

C μ :

empirical constant (0.09)

C 1s :

empirical constant (1.44)

C 2s :

empirical constant (1.92)

C :

specific heat capacity of the plasma (J/kg K)

C p :

specific heat capacity of yttria-stabilized zirconia (J/kg K)

C D :

drag coefficient

D :

diffusion coefficient (m2/s)

D p :

particle diameter (m)

E :

arc voltage (V)

F D :

viscous drag force of the particle (N)

G K :

product of the eddy viscosity and viscous dissipation terms

H :

enthalpy (J/kg)

h :

heat transfer coefficient (W/m K)

h lt :

latent heat of vaporization (J/kg)

I :

arc current (A)

I t :

turbulent intensity (%)

m p :

mass of particle (kg)

k p :

thermal conductivity of yttria-stabilized zirconia (J/kg K)

k :

thermal conductivity of plasma (J/kg K)

K :

von Kármán constant (0.42)

L :

length of the curved substrate

p :

pressure (Pa)

\( P_{\text{in}}^{\text{W}} \) :

constant heat source (W/m3)

\( \dot{q} \) :

heat flux (W/m2)

Q c :

convective heat transfer (J)

R1:

inner radius of the curved substrate

R2:

outer radius of the curved substrate

Re d :

Reynolds number based on the particle diameter (m/s)

S φ :

source term

T b :

boiling point of yttria-stabilized zirconia (K)

T m :

melting point of yttria-stabilized zirconia (K)

T E :

plasma temperature at an element point adjacent to the wall (K)

T i :

initial particle temperature (K)

T p :

particle temperature (K)

T w :

plasma temperature on the substrate wall (K)

T :

local temperature of the plasma (K)

u, v, w :

velocity components in x, y, and z directions, respectively (m/s)

U :

velocity magnitude (m/s)

U E :

plasma velocity at an element point adjacent to the wall (m/s)

V :

volume (m3)

V :

plasma velocity vector (m/s)

\( {\bar{\mathbf{V}}} \) :

mean velocity vector (m/s)

V′ :

velocity vector fluctuation (m/s)

V n :

volume fraction for species n

V p :

particle velocity vector (m/s)

W :

width of the curved substrate

W p :

energy increase of the particle (J)

X p :

position of the particle motion

y :

distance from element to the wall (m)

Y n :

mass fraction for species n

y E :

distance from adjacent element point to the wall (m)

∞:

far field region

l:

laminar state

p:

particle

t:

turbulent state

mix:

mixture properties

α:

thermal diffusivity (m2/s)

ε:

turbulent kinetic energy dissipation rate (m2/s2)

η:

torch efficiency (%)

Γφ :

diffusion coefficient

κ:

turbulent kinetic energy (m2/s2)

κE :

turbulent kinetic energy at adjacent element point to the wall (m2/s2)

μ:

dynamic viscosity (kg/ms)

νp :

kinematic viscosity (m2/s)

φ:

process variable

ρ:

density of plasma (kg/m3)

ρp :

density of zirconia (kg/m3)

τW :

wall shear stress (Pa)

Pr :

Prandtl number

Re :

Reynolds number

U*:

dimensionless mean velocity

y*:

dimensionless distance from element to the wall

\( y_{\text{T}}^{*} \) :

dimensionless thermal sublayer thickness

References

  1. M. Suarez, S. Bellayer, M. Traisnel, W. Gonzalez, D. Chicot, J. Lesage, E.S. Puchi-Cabrera, and M.H. Staia, Corrosion Behavior of Cr3C2-NiCr Vacuum Plasma Sprayed Coatings, Surf. Coat. Technol., 2008, 202(18), p 4566-4571

    Article  CAS  Google Scholar 

  2. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66

    Article  CAS  ADS  Google Scholar 

  3. K.A. Khor and Y.W. Gu, Thermal Properties of Plasma-Sprayed Functionally Graded Thermal Barrier Coatings, Thin Solid Films, 2000, 372(1-2), p 104-113

    Article  CAS  ADS  Google Scholar 

  4. R. Dal Maschio, V. Sglavo, L. Mattivi, L. Bertamini, and S. Sturlese, Indentation Method for Fracture Resistance Determination of Metal/Ceramic Interfaces in Thick TBCs, J. Therm. Spray Technol., 1994, 3(1), p 51-56

    Article  ADS  Google Scholar 

  5. M. Vardelle, A. Vardelle, and P. Fauchais, Spray Parameters and Particle Behavior Relationships During Plasma Spraying, J. Therm. Spray Technol., 1993, 2(1), p 79-91

    Article  CAS  ADS  Google Scholar 

  6. W. Zhang, L. Zheng, H. Zhang, and S. Sampath, Study of Injection Angle and Carrier Gas Flow Rate Effects on Particles In-Flight Characteristics in Plasma Spray Process: Modeling and Experiments, Plasma Chem. Plasma Process., 2007, 27(6), p 701-716

    Article  MATH  CAS  Google Scholar 

  7. P.C. Huang, J. Heberlein, and E. Pfender, Particle Behavior in a Two-Fluid Turbulent Plasma Jet, Surf. Coat. Technol., 1995, 73(3), p 142-151

    Article  CAS  Google Scholar 

  8. M.A. Jog and L. Huang, Transient Heating and Melting of Particles in Plasma Spray Coating Process, J. Heat Transfer, 1996, 118(2), p 471-477

    Article  CAS  Google Scholar 

  9. W. Wang, D. Li, J. Hu, Y. Peng, Y. Zhang, and D. Li, Numerical Simulation of Fluid Flow and Heat Transfer in a Plasma Spray Gun, Int. J. Adv. Manufact. Technol., 2005, 26(5), p 537-543

    Article  MATH  Google Scholar 

  10. R. Westhoff, G. Trapaga, and J. Szekely, Plasma-Particle Interactions in Plasma Spraying Systems, Metall. Mater. Trans. B, 1992, 23(6), p 683-693

    ADS  Google Scholar 

  11. R.L. Williamson, J.R. Fincke, and C.H. Chang, A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying, Plasma Chem. Plasma Process., 2000, 20(3), p 299-324

    Article  CAS  Google Scholar 

  12. H. Martin, P.H. James, and T.F. Irvine, Jr., Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces. Advances in Heat Transfer, Elsevier, Amsterdam, 1977, p 1-60

    Google Scholar 

  13. T.-C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Transfer, 2005, 48(21-22), p 4384-4396

    Article  CAS  Google Scholar 

  14. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5), p 634-642

    Article  ADS  Google Scholar 

  15. C. Kang, H. Ng, and S. Yu, Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates, Plasma Chem. Plasma Process., 2006, 26(2), p 149-175

    Article  CAS  Google Scholar 

  16. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, 2nd ed., Plenum Publishing, New York, 1994

    Google Scholar 

  17. C.B. Ang, A. Devasenapathi, H.W. Ng, S.C.M. Yu, and Y.C. Lam, A Proposed Process Control Chart for DC Plasma Spraying Process. Part II. Experimental Verification for Spraying Alumina, Plasma Chem. Plasma Process., 2001, 21(3), p 401-420

    Article  CAS  Google Scholar 

  18. B.E. Launder and D.B. Spalding, The Numerical Computation of Turbulent Flows, Comput. Meth. Appl. Mech. Eng., 1974, 3(2), p 269-289

    Article  MATH  Google Scholar 

  19. Fluent 6.1 User’s Guide, Fluent, Inc., 2003, p 10-49

  20. C.L.V. Jayatilleke, The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer, Prog. Heat Mass Transfer, 1969, 1, p 193-329

    CAS  Google Scholar 

  21. S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech. Digital Arch., 1972, 55(02), p 193-208

    MATH  ADS  Google Scholar 

  22. E. Bourdin, P. Fauchais, and M. Boulos, Transient Heat Conduction Under Plasma Conditions, Int. J. Heat Mass Transfer, 1983, 26(4), p 567-582

    Article  CAS  Google Scholar 

  23. W.E. Ranz and W.R. Marshall, Evaporation from Drops, Chem. Eng. Prog., 1952, 3, p 141-146

    Google Scholar 

  24. J.W. McKelliget, G. Trapaga, E. Gutierrez-Miravete, and M. Cybulski, An Integrated Mathematical Model of the Plasma Spraying Processes, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet Ed., ASM International, 1998, p 335-340

  25. R. Bolot, J. Li, and C. Coddet, Some Key Advice for the Modeling of Plasma Jets Using FLUENT, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential, E. Lugscheider, Ed., ASM International, 2005, p 1367-1371

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heong Wah Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ba, T., Kang, C.W. & Ng, H.W. Numerical Study of the Plasma Flow Field and Particle In-flight Behavior with the Obstruction of a Curved Substrate. J Therm Spray Tech 18, 858–874 (2009). https://doi.org/10.1007/s11666-009-9395-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9395-1

Keywords

Navigation