Skip to main content

Advertisement

Log in

Effect of Solid Solution Treatment on the Microstructure and Properties of AlNb1.5TaTi2Zr1.5 Refractory High-Entropy Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The refractory high-entropy alloy of AlNb1.5TaTi2Zr1.5 was prepared by vacuum arc melting, and the alloy was subjected to solid solution treatment at 1473 K/2 h under an argon environment. The microstructures and mechanical properties of AlNb1.5TaTi2Zr1.5 in both the as-cast and solid solution states were studied. The results showed that the density of the as-cast AlNb1.5TaTi2Zr1.5 alloy is 6.85 g/cm3, and it has a two-phase structure consisting of a BCC matrix and a second phase of HCP. After solid solution treatment, the phase composition of the BCC microstructure was accompanied by the precipitation of a B2-ordered phase. Due to the dual effect of lattice distortion and the obstruction of B2-ordered particles, the hardness of the solid solution state AlNb1.5TaTi2Zr1.5 alloy reached a high value of 7.42 GPa. The compressive stress at room temperature was 2370.05 MPa, and the high-temperature compressive stress in solid solution at 873 K was 1061.68 MPa. The compressive properties at room and high temperatures were greatly improved, and their properties were higher than those of the as-cast state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  3. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater. Mater., 2011, 59(1), p 182–190.

    Article  CAS  Google Scholar 

  4. C.M. Lin, H.L. Tsai, and H.Y. Bor, Effect of Aging Treatment on Microstructure and Properties of High-Entropy Cu0.5CoCrFeNi Alloy, Intermetallics, 2010, 18(6), p 1244–1250.

    Article  CAS  Google Scholar 

  5. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today, 2016, 19(6), p 349–362.

    Article  CAS  Google Scholar 

  6. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72.

    Article  CAS  Google Scholar 

  7. T. Xiong, S.J. Zheng, J.Y. Pang, and X.L. Ma, High-Rtrength and High-Ductility AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Achieved via Precipitation Strengthening in a Heterogeneous Structure, Scr. Mater., 2020, 186, p 336–340.

    Article  CAS  Google Scholar 

  8. M. Kato, M. Nishimoto, I. Muto, and Y. Sugawara, Role of Cu in Corrosion Resistance of CoCrCuFeNi Medium-Entropy Alloys: Importance of Compositional Change and Thickening of Oxide Films, Corros. Sci., 2023, 213, 110982.

    Article  CAS  Google Scholar 

  9. S.Y. Zhu, K.F. Gan, D.S. Yan, L.L. Han, P.F. Wu, and Z.M. Li, Multiple Minor Elements Improve Strength-Ductility Synergy of a High-Entropy Alloy, Mater. Sci. Eng. A, 2022, 840, 142901.

    Article  CAS  Google Scholar 

  10. X.C. Ye, W.Q. Xu, Z. Li, D. Xu, W. Zhang, B. Li, and D. Fang, Microstructures and Mechanical Properties of FeNiCrMnAl High-Entropy Alloys, J. Mater. Eng. Perform., 2022, 31(10), p 7820–7829.

    Article  CAS  Google Scholar 

  11. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765.

    Article  CAS  Google Scholar 

  12. T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti Content on Microstructure and Properties of TixZrVNb Refractory High-Entropy Alloys, Int. J. Min. Met. Mater., 2020, 27(10), p 1318–1325.

    Article  CAS  Google Scholar 

  13. H.T. Jeong and W.J. Kim, Deformation Mechanisms and Processing Maps for High Entropy Alloys (Presentation of Processing Maps in Terms of Zener-Hollomon Parameter), Materials, 2023, 16(3), p 919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y.X. Ye, B. Ouyang, C.Z. Liu, G.J. Duscher, and T.G. Nieh, Effect of Interstitial Oxygen and Nitrogen on Incipient Plasticity of NbTiZrHf High-Entropy Alloys, Acta Mater. Mater., 2020, 199, p 413–424.

    Article  CAS  Google Scholar 

  15. Z.B. An, S.C. Mao, Y.N. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, and X.D. Han, A Novel HfNbTaTiV High-entropy Alloy of Superior Mechanical Properties Designed on the Principle of Maximum Lattice Distortion, J. Mater. Sci. Technol., 2021, 79, p 109–117.

    Article  CAS  Google Scholar 

  16. T.M. Butler, K.J. Chaput, J.R. Dietrich, and O.N. Senkov, High Temperature Oxidation Behaviors of Equimolar NbTiZrV and NbTiZrCr Refractory Complex Concentrated Alloys (RCCAs), J. Alloys Compd., 2017, 729, p 1004–1019.

    Article  CAS  Google Scholar 

  17. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19(5), p 698–706.

    Article  CAS  Google Scholar 

  18. O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy, J. Mater. Sci., 2012, 47, p 6522–6534.

    Article  CAS  Google Scholar 

  19. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509(20), p 6043–6048.

    Article  CAS  Google Scholar 

  20. X. Yang, Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Eng., 2012, 36, p 292–298.

    Article  Google Scholar 

  21. W. Wang, Z.T. Zhang, J.Z. Niu, H. Wu, S.C. Zhai, and Y. Wang, Effect of Al Addition on Structural Evolution and Mechanical Properties of The AlxHfNbTiZr High-Entropy Alloys, Mater. Today Commun., 2018, 16, p 242–249.

    Article  CAS  Google Scholar 

  22. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  CAS  Google Scholar 

  23. W.T. Jiang, Y. Wang, X.H. Wang, B. Jiang, T.F. Ma, H.J. Kang, and D.D. Zhu, Effect of Al on Microstructure and Mechanical Properties of Lightweight AlxNb0.5TiV2Zr0.5 Refractory High Entropy Alloys, Mater. Sci. Eng. A, 2023, 865, p 144628.

    Article  CAS  Google Scholar 

  24. C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, and J.W. Yeh, Effect of Al Addition on Mechanical Properties and Microstructure of Refractory AlxHfNbTaTiZr Alloys, J. Alloys Compd., 2015, 624, p 100–107.

    Article  CAS  Google Scholar 

  25. L. Bai, Y.Z. Liu, Y.Y. Guo, Y.K. Lv, T.T. Guo, and J. Chen, Effects of Al Addition on Microstructure and Mechanical Properties of Co-Free (Fe40Mn40Ni10Cr10)100-xAlx High-Entropy Alloys, J. Alloys Compd., 2021, 879, 160342.

    Article  CAS  Google Scholar 

  26. J.F. Zhang, H. Qiu, H.G. Zhu, and Z.H. Xie, Effect of Al Additions on the Microstructures and Tensile Properties of AlxCoCr3Fe5Ni High Entropy Alloys, Mater CharactCharact., 2021, 175, 111091.

    Article  CAS  Google Scholar 

  27. L.C. Chang, Y.C. Lu, and C.H. Hsueh, Effects of Aluminum Addition on Microstructures and Mechanical Properties of NbTiVZr High-entropy Alloy Nitride Films, Intermetallics, 2023, 156, 107868.

    Article  CAS  Google Scholar 

  28. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44–51.

    Article  Google Scholar 

  29. Q. Cheng, J.Y. Mo, X.Q. Li, and X.D. Xu, A Revisit to the Role of Mo in an MP35N Superalloy: An Experimental and Theoretical Study, J. Mater. Sci. Technol., 2023, 157, p 60–70.

    Article  CAS  Google Scholar 

  30. S.D. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra, Contrasting Mechanical Behavior in Precipitation Hardenable AlxCoCrFeNi High Entropy Alloy Microstructures: Single Phase FCC vs. Dual Phase FCC-BCC, Mater. Sci. Eng. A, 2019, 739, p 158–166.

    Article  CAS  Google Scholar 

  31. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238.

    Article  CAS  Google Scholar 

  32. Z.H. Guo, X.Y. Shen, F. Liu, J.Y. Guan, Y. Zhang, F.Y. Dong, Y.X. Wang, X.G. Yuan, B.B. Wang, L.S. Luo, Y.Q. Su, and J. Cheng, Microstructure and Mechanical Properties of Alx (TiZrTa0.7NbMo) Refractory High-Entropy Alloys, J. Alloys Compd., 2023, 960, p 170739.

    Article  CAS  Google Scholar 

  33. F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of A CoCrFeMnNi High-Entropy Alloy, Acta Mater. Mater., 2013, 61(15), p 5743–5755.

    Article  CAS  Google Scholar 

  34. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, and Y. Zhang, A Hexagonal Close-Packed High-Entropy Alloy: The Effect of Entropy, Mater. Des., 2016, 96, p 10–15.

    Article  CAS  Google Scholar 

  35. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538.

    Article  CAS  Google Scholar 

  36. Y. Zhang, X. Yang, and P.K. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys, JOM, 2012, 64, p 830–838.

    Article  CAS  Google Scholar 

  37. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao, Guidelines in Predicting Phase Formation of High-Entropy Alloys, MRS Commun., 2014, 4(2), p 57–62.

    Article  CAS  Google Scholar 

  38. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), 103505.

    Article  Google Scholar 

  39. A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-component Alloys, Intermetallics, 2014, 53, p 112–119. (in India)

    Article  CAS  Google Scholar 

  40. Q. Wang, J.C. Han, Y.F. Liu, Z.W. Zhang, C. Dong, and P.K. Liaw, Coherent Precipitation and Stability of Cuboidal Nanoparticles in Body-Centered-Cubic Al0.4Nb0.5Ta0.5TiZr0.8 Refractory High Entropy Alloy, Scr. Mater., 2021, 190, p 40–45.

    Article  CAS  Google Scholar 

  41. C. Li, J.C. Li, and M. Zhao, Effect of Aluminum Contents on Microstructure and Properties of AlxCoCrFeNi Alloys, J. Alloys Compd., 2010, 504, p 515–518.

    Article  Google Scholar 

  42. O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of Aluminum on the Microstructure and Properties of Two Refractory High-Entropy Alloys, Acta Mater. Mater., 2014, 68, p 214–228.

    Article  CAS  Google Scholar 

  43. S. Zeng, Y.K. Zhou, H. Li, H.W. Zhang, H.F. Zhang, and Z.W. Zhu, Microstructure and Mechanical Properties of Lightweight Ti3Zr1.5NbVAlx (x=0, 0.25, 0.5 and 0.75) Refractory Complex Concentrated alloys, J. Mater. Sci. Technol., 2022, 130, p 64–74.

    Article  CAS  Google Scholar 

  44. T.T. Wang, W.T. Jiang, X.H. Wang, B. Jiang, Y. Wang, D.D. Zhu, and M.L. Hu, Effect of Ti on Microstructure and Mechanical Properties of Al0.8Nb0.5TixV2Zr0.5 Refractory Complex Concentrated Alloys, Int. J. Refract. Met. Hard Mater., 2023, 117, 106383.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Talent Training Project of the Central Government’s Reform and Development Funds for Local Universities (Grant Number [2021]137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yandong Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Yu, Y. & Zhou, H. Effect of Solid Solution Treatment on the Microstructure and Properties of AlNb1.5TaTi2Zr1.5 Refractory High-Entropy Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09554-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09554-9

Keywords

Navigation