Skip to main content

Advertisement

Log in

Synergistic Effect of Sc and Excess Mg on the Microstructure and Mechanical Properties of Hypoeutectic Al-10Mg2Si Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of Sc and/or excess Mg on the microstructure characteristics, tensile properties, and fracture behavior of a hypoeutectic Al-10Mg2Si alloy were systematically studied. The results showed that adding 0.25% Sc to Al-10Mg2Si alloy changed the morphology of the primary α-Al crystals from a coarse dendritic shape to a nearly spherical shape, while the its crystal size is greatly reduced; an additional 2.8% Mg made the the primary α-Al be finer and more uniform. The joint addition of 0.25% Sc and 2.8% Mg greatly reduced the size of Mg2Si eutectic phase in Al-10Mg2Si alloy and transformed its morphology from coarse Chinese characters to particles or dots. The refinement of eutectic Mg2Si can be attributed to the enrichment and adsorption of Sc and Mg atoms on the surface and surrounding of eutectic Mg2Si, which inhibits the growth of eutectic Mg2Si and promotes a change in its growth direction. The strength and plasticity of the alloy were simultaneously improved due to the addition of Sc or/and Mg. The YS, UTS, and EL of the alloy with 0.25% Sc and 2.8% Mg added together displayed the highest values of 345 MPa, 145 MPa, and 8.6%, respectively which were 48.7, 40.8, and 230.8% higher than those of the alloy without adding 0.25% Sc and 2.8% Mg, respectively. The brittleness of Al-10Mg2Si comes from the decohesion of coarse eutectic Mg2Si particles in the early stage of stretching, while the large amount of plastic deformation generated before cracking of fine eutectic Mg2Si particles is responsible for the high strength and ductility of the Al-10Mg2Si-0.25Sc-2.8 Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Ji, D. Watson, Z. Fan, and M. White, Development of a Super Ductile Diecast Al-Mg-Si Alloy, Mater. Sci. Eng. A, 2012, 30(556), p 824–833.

    Article  Google Scholar 

  2. J. Zhang, Z. Fan, Y.Q. Wang, and B. Zhou, Microstructural Refinement in Al-Mg2Si in-Situ Composites, J. Mater. Sci. Lett., 1999, 18(10), p 783–784.

    Article  CAS  Google Scholar 

  3. Q.D. Qin, Y.G. Zhao, and P.J. Cong, Strontium Modification and Formation of Cubic Primary Mg2Si Crystals in Mg2Si/Al Composite [J], J. Alloys Compd., 2008, 454, p 142–146.

    Article  CAS  Google Scholar 

  4. R. Hadian, M. Emamy, N. Varahram, and N. Nemati, The effect of Li on the Tensile Properties of Cast Al–Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2008, 490(1–2), p 250–257.

    Article  Google Scholar 

  5. X.F. Wu, K.Y. Wang, R.D. Zhao, and F.F. Wu, Enhanced Mechanical Properties of Hypoeutectic Al-10Mg2Si Cast Alloys by Bi Addition, J. Alloys Compd., 2018, 767, p 163–172.

    Article  CAS  Google Scholar 

  6. W. Jiang, X. Xu, Y. Zhao, Z. Wang, C. Wu, D. Pan, and Z. Meng, Effect of the Addition of Sr Modifier in Different Conditions on Microstructure and Mechanical Properties of T6 Treated Al-Mg2Si in-situ Composite, Mater. Sci. Eng. A, 2018, 4(721), p 263–273.

    Article  Google Scholar 

  7. R. Du, D. Yuan, F. Li, D.C. Zhang, S.S. Wu, and S.L. Lü, Effect of in-situ TiB2 Particles on Microstructure and Mechanical Properties of Mg2Si/Al Composites, J. Alloys Compd., 2019, 776, p 536–542.

    Article  CAS  Google Scholar 

  8. C. Li, C. Wang, P.K. Ma, J. Xu, Z.Z. Yang, M. Zha, J.G. Wang, and H.Y. Wang, Effect of Sb Modification on Microstructure and Mechanical Properties of Hypoeutectic Al-11Mg2Si Alloy, Mater. Sci. Eng. A, 2020, 782, p 1–16.

    Article  Google Scholar 

  9. X.F. Wu, K.Y. Wang, F.F. Wu, R.D. Zhao, M.H. Chen, J. Xiang, S.N. Ma, and Y. Zhang, Simultaneous Grain Refinement and Eutectic Mg2Si Modification in Hypoeutectic Al-11Mg2Si Alloys by Sc Addition, J. Alloy. Compd., 2019, 791, p 402–410.

    Article  CAS  Google Scholar 

  10. A.F. Norman, P.B. Prangnell, and R.S. McEwen, The Solidification Behaviour of Dilute Aluminium-Scandium Alloys, Acta Mater., 1998, 46, p 5715–5732.

    Article  CAS  Google Scholar 

  11. K. Venkateswarlu, L.C. Pathak, A.K. Ray, G. Das, P.K. Verma, M. Kumar, and R.N. Ghosh, Microstructure, Tensile Strength and Wear Behaviour of Al-Sc Alloy, Mater. Sci. Eng. A, 2004, 383, p 374–380.

    Article  Google Scholar 

  12. P.K. Mandal, R. Anant, R. Kumar, and V.R. Muthaiah, Effect of Scandium on Ageing Kinetics in Cast Al-Zn-Mg Alloys, Mater. Sci. Eng. A, 2017, 1(696), p 257–266.

    Article  Google Scholar 

  13. Z. Lu, Y. Jiang, and L. Yu, The Effect of Minor Scandium Addition on Microstructure Evolution and Mechanical Properties of Spray Formed Al-Zn-Mg-Cu Alloy, J. Alloy. Compd., 2023, 948, p169710.

    Article  Google Scholar 

  14. U. Patakham, J. Kajornchaiyakul, and C. Limmaneevichitr, Grain Refinement Mechanism in an Al-Si-Mg Alloy with Scandium, J. Alloys Compd., 2012, 542, p 177–186.

    Article  CAS  Google Scholar 

  15. W.D. Zhang, Y. Liu, J. Yang, J.Z. Dang, H. Xu, and Z.M. Du, Effects of Sc Content on the Microstructure of as-Cast Al-7 wt.% Si Alloys, Mater. Char., 2012, 66, p 104–110.

    Article  CAS  Google Scholar 

  16. C. Xu, W.L. Xiao, S.J. Hanada, H.S. Yamagat, and C.L. Ma, The Effect of Scandium Addition on Microstructure and Mechanical Properties of Al-Si-Mg Alloy: A Multi-Refinement Modifier, Mater. Char., 2015, 110, p 160–169.

    Article  CAS  Google Scholar 

  17. O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Effect of Zr, Cr and Sc on the Al-Mg-Si-Mn High-Pressure Die Casting alloys, Mater. Sci. Eng. A, 2019, 759, p 603–612.

    Article  CAS  Google Scholar 

  18. W. Eidhed, Effects of Solution Treatment Time and Sr-Modification on Microstructure and Mechanical Property of Al-Si Piston Alloy, J. Mater. Sci. Technol., 2008, 24, p 29–32.

    CAS  Google Scholar 

  19. S. Farahany, A. Ourdjni, M.H. Idris, and L.T. Thai, Effect of Bismuth on Microstructure of Unmodified and Sr-Modified Al-7Si-0.4Mg Alloys, Trans. Nonferrous Met. Soc. China, 2011, 21, p 1455–1464.

    Article  CAS  Google Scholar 

  20. F. Guo, W. Wang, W. Yu, Y. Zhang, S. Pan, Z. Zhou, D. Liu, J. Qin, Y. Wang, and X. Tian, Enhanced Nucleation and Refinement of Eutectic Si by High Number-Density Nano-Particles in Al–10Si–05 Sb Alloys, Mater. Des., 2017, 5(117), p 382–389.

    Article  Google Scholar 

  21. C. Xu, W.L. Xiao, R.X. Zheng, S.J. Hanada, H.S. Yamagata, and C.L. Ma, The Synergic Effects Of Sc And Zr On The Microstructure And Mechanical Properties Of Al-Si-Mg Alloy, Mater. Des., 2015, 88, p 485–492.

    Article  CAS  Google Scholar 

  22. A. Darlapudi, S.D. McDonald, and D.H. StJohn, The Influence of Ternary Cu Additions on the Nucleation of Eutectic Grains in a Hypoeutectic Al-10 wt.%Si alloy, J. Alloy. Compd., 2015, 646, p 699–705.

    Article  CAS  Google Scholar 

  23. K.R. Ravi, S. Manivannan, G. Phanikumar, B.S. Murty, and S. Sundarraj, Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys, Metall. Mater. Trans. A, 2011, 42, p 2028–2039.

    Article  CAS  Google Scholar 

  24. Q.L. Li, Y.Q. Zhu, S. Zhao, Y.F. Lan, D.X. Liu, G.F. Jian, Q. Zhang, and H.W. Zhou, Influences of Fe, Mn and Y Additions on Microstructureand Mechanical Properties of Hypoeutectic Al-7%Si Alloy, Intermetallics, 2020, 120, p 1–18.

    Article  CAS  Google Scholar 

  25. J. Kang, R. Su, D.Y. Wu, C.H. Liu, T. Li, L.S. Wang, and B. Narayanaswamy, Synergistic Effects of Ce and Mg on the Microstructure and Tensile Properties of Al-7Si-0.3Mg-0.2Fe Alloy, J. Alloy. Compd., 2019, 796, p 267–278.

    Article  CAS  Google Scholar 

  26. L. Ceschini, A. Morri, A. Morri, A. Gamberini, and S. Messieri, Correlation Between Ultimate Tensile Strength and Solidification Microstructure for the Sand Cast A357 Aluminium Alloy, Mater. Des., 2009, 30(10), p 4525–4531.

    Article  CAS  Google Scholar 

  27. J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Equilibrium Pseudobinary Al-Mg2Si Phase Diagram, Mater. Sci. Technol., 2001, 17(5), p 494–496.

    Article  CAS  Google Scholar 

  28. Y.X. Dong, P. Xiao, Y.M. Gao, Q.Q. Zhao, and H.C. Yang, Microstructure Refinement and Mechanical Properties of Eutectic Mg2Si Reinforced Mg Matrix Composites Containing Sr Element, J. Mater. Res. Technol., 2022, 17, p 2614–2623.

    Article  CAS  Google Scholar 

  29. C. Li, Y.Y. Wu, H. Li, and X.F. Liu, Microstructural Formation in Hypereutectic Al-Mg2Si with Extra Si, J. Alloys Compd., 2009, 477(1–2), p 212–216.

    Article  CAS  Google Scholar 

  30. Y.C. Lee, A.K. Dahle, and D.H. Sbjohn, The Role of Solute in Grain Refinement of Magnesium, Metall. Mater. Trans. A, 2000, 31(11), p 2895–2906.

    Article  Google Scholar 

  31. J.C. Chenc, M.X. Li, Z.Y. Yu, Z.Y. Meng, C. Wang, Z.Z. Yang, and H.Y. Wang, Simultaneous Refinement of α-Mg Grains and β-Mg17Al12 in Mg-Al Based Alloys via Heterogeneous Nucleation on Al8Mn4Sm, J. Magnes. Alloy., 2023, 11(1), p 348–360.

    Article  Google Scholar 

  32. T.H. Ludwig, E.S. Dæhlen, P.L. Schaffer, and L. Arnberg, The Effect of Ca and P Interaction on the Al-Si Eutectic in a Hypoeutectic Al-Si Alloy, J. Alloys Compd., 2014, 15(586), p 180–190.

    Article  Google Scholar 

  33. J.L. Murray, The Al-Sc (Aluminum-Scandium) system, J. Phase Equilib., 1998, 19(5), p 380–382.

    Article  CAS  Google Scholar 

  34. D. Turnbull and B. Vonnegut, Nucleation catalysis, Ind. Eng. Chem., 1952, 44(6), p 1292–1294.

    Article  CAS  Google Scholar 

  35. V. Ocenasek and M. Slamova, Resistance to Recrystallization Due to Sc and Zr Addition to Al-Mg alloys, Mater Charact, 2001, 47(2), p 157–162.

    Article  CAS  Google Scholar 

  36. V.G. Davydov, T.D. Rostova, V.V. Zakharov, Yu.A. Filatov, and V.I. Yelagin, Scientific Principles of Making an Alloying Addition of Scandium to Aluminium Alloys, Mater. Sci. Eng. A, 2000, 280, p 30–36.

    Article  Google Scholar 

  37. C. Xu, W.L. Xiao, S. Hanada, H. Yamagata, and C.L. Ma, The Effect of Scandium Addition on Microstructure and Mechanical Properties of Al-Si-Mg Alloy: A Multi-Refinement Modifier, Mater Charact, 2015, 110, p 160–169.

    Article  CAS  Google Scholar 

  38. Q.L. Pan, Z.M. Yin, J.X. Zou, X.M. Chen, and C.F. Zhang, The Role of Trace Sc in Al-Mg Alloys, Acta Metall. Sin., 2001, 37(7), p 749–753.

    CAS  Google Scholar 

  39. S. Lu and A. Hellawell, The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning, Metall. Trans. A, 1987, 18, p 1721–1733.

    Article  Google Scholar 

  40. J.H. Li, M. Albu, F. Hofer, and P. Schumacher, Solute Adsorption and Entrapment During Eutectic Si Growth, Acta Mater., 2015, 83, p 187–202.

    Article  CAS  Google Scholar 

  41. H.C. Shin, J.Y. Son, B.K. Min, Y.S. Choi, K.M. Cho, D.H. Cho, and I.M. Park, The Effect of Ce on the Modification of Mg2Si Phases of As-Cast Eutectic Mg-Si Alloys, J. Alloys Compd., 2019, 792, p 59–68.

    Article  Google Scholar 

  42. T. Liu, Z. Pei, D. Barton, G.B. Thompson, and L.N. Brewer, Characterization of Nanostructures in a High Pressure Die Cast Al-Si-Cu alloy, Acta Mater., 2022, 1(224), p 117500.

    Article  Google Scholar 

  43. L. Gao, R.S. Chen, and E.H. Han, Solid Solution Strengthening Behaviors in Binary Mg-Y Single Phase Alloys, J. Alloys Compd., 2009, 472(1–2), p 234–240.

    Article  CAS  Google Scholar 

  44. F.B. Grosselle, G.L. Timelli, and F. Bonollo, Doe Applied to Microstructural and Mechanical Properties of Al-Si-Cu-Mg Casting Alloys for Automotive Applications, Mater. Sci. Eng. A, 2010, 527(15), p 3536–3545.

    Article  Google Scholar 

  45. M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstrucure and Strengthening of Al-Li-Cu-Mg Alloys and MMCs: II. Modelling of Yield Strength, Acta Mater., 1999, 47(14), p 3855–3868.

    Article  CAS  Google Scholar 

  46. F.L. Wang, J.J. Bhattacharyya, and S.R. Agnew, Effect of Precipitate Shape and Orientation on Orowan Strengthening of Non-Basal Slip Modes in Hexagonal Crystals Application to Magnesium Alloys, Mater. Sci. Eng. A, 2016, 666, p 114–122.

    Article  CAS  Google Scholar 

  47. J. Røyset and N. Ryum, Scandium in Aluminium Alloys, Int. Mater. Rev., 2005, 50, p 19–44.

    Article  Google Scholar 

  48. M.R. Ghorbani, M. Emamy, and N. Nemati, Microstructural and Mechanical Characterization of Al-15%Mg2Si Composite Containing Chromium, Mater. Des., 2011, 32(8–9), p 4262–4269.

    Article  CAS  Google Scholar 

  49. X. Zhang, J.Y. Hu, B.X. Dong, X. Li, S.Q. Kou, S. Zhang, and F. Qiu, Effect of Cu and Zn Elements on Morphology of Ceramic Particles and Interfacial Bonding in TiB2/Al Composites, Ceram. Int., 2022, 48(18), p 25894–25904.

    Article  CAS  Google Scholar 

  50. A. Weck, D.S. Wilkinson, and E. Maire, Observation of Void Nucleation, Growth and Coalescence in a Model Metal Matrix Composite using X-ray Tomography, Mater. Sci. Eng. A, 2008, 488(1–2), p 435–445.

    Article  Google Scholar 

  51. A. Razaghiana, A. Bahrami, and M. Emamy, The influence of Li on the Tensile Properties of Extruded in situ Al-15%Mg2Si Composite, Mater. Sci. Eng. A, 2012, 532, p 346–353.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51971106), the Education Department of Jiangxi Province (Grant No. GJJ2202921, GJJ2202905), the Liaoning Natural Science Foundation of China (Grant No. 2019-MS-171), and the Programs for Liaoning Innovative Talents and Liaoning Distinguished Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wu, F., Qin, J. et al. Synergistic Effect of Sc and Excess Mg on the Microstructure and Mechanical Properties of Hypoeutectic Al-10Mg2Si Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09407-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09407-5

Keywords

Navigation