Skip to main content
Log in

Role of Stable Keyhole Mode in the Formability, Microstructure, and Mechanical Properties of High Layer Thickness in Laser Powder Bed Fusion of Ti-6Al-4V Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, we printed high layer thickness Ti-6Al-4V parts using a stable keyhole melt pool mode. Firstly, we performed the single tracks experiments to obtain the size of the melt pool at different scanning speeds. Results demonstrated that the depths of the molten pools are high which makes it possible to improve the building rate by increasing layer thickness. Under the conditions of 170 W laser power, 60 μm layer thickness, and a scanning speed of 900 mm/s, the building rate, relative density, microhardness, ultimate tensile strength (UTS), yield strength (YS), and elongations are 424 HV, 3.78 mm3/s, 99.4%, 1283 MPa, and 1202 MPa, 7.8%, respectively. The results showed that employing a stable keyhole mode enables the formation of high layer thickness samples which had the advantage of both high relative density and exceptional mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. A.Y. Alfaify, J. Hughes, and K. Ridgway, Critical Evaluation of the Pulsed Selective Laser Melting Process When Fabricating Ti64 Parts Using a Range of Particle Size Distributions, Addit. Manuf., 2018, 19, p 197–204.

    CAS  Google Scholar 

  2. H. Azizi, H. Zurob, B. Bose, S. Reza Ghiaasiaan, X. Wang, S. Coulson, V. Duz, and A.B. Phillion, Additive Manufacturing of a Novel Ti-Al-V-Fe Alloy Using Selective Laser Melting, Addit. Manuf., 2018, 21, p 529–535.

    CAS  Google Scholar 

  3. A. Khorasani, I. Gibson, U.S. Awan, and A. Ghaderi, The Effect of SLM Process Parameters on Density, Hardness, Tensile Strength and Surface Quality of Ti-6Al-4V, Addit. Manuf., 2019, 25, p 176–186.

    CAS  Google Scholar 

  4. J.J. Lin, Y.H. Lv, Y.X. Liu, B.S. Xu, Z. Sun, Z.G. Li, and Y.X. Wu, Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Wall Deposited by Pulsed Plasma Arc Additive Manufacturing, Mater. Des., 2016, 102, p 30–40.

    Article  CAS  Google Scholar 

  5. H. Hassanin, L. Finet, S.C. Cox, P. Jamshidi, L.M. Grover, D.E.T. Shepherd, O. Addison, and M.M. Attallah, Tailoring Selective Laser Melting Process for Titanium Drug-Delivering Implants with Releasing Micro-Channels, Addit. Manuf., 2018, 20, p 144–155.

    CAS  Google Scholar 

  6. D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, and J. Zhu, Material-Structure-Performance Integrated Laser-Metal Additive Manufacturing, Science, 2021, 372(6545), p eabg1487.

    Article  Google Scholar 

  7. Z. Hu, L. Xue, Y. Yang, X. Zhang, D. Lu, Y. Liu, and M. Wu, Improved Fatigue Life of SLM-Produced TC4 Alloy Treated by a Pulsed Magnetic Field, Mater. Today Commun., 2023, 37, 107160.

    Article  CAS  Google Scholar 

  8. P. Sun, Z.Z. Fang, Y. Zhang, and Y. Xia, Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method, JOM, 2017, 69(12), p 2731–2737.

    Article  CAS  Google Scholar 

  9. M. Ma, Z. Wang, M. Gao, and X. Zeng, Layer Thickness Dependence of Performance in High-Power Selective Laser Melting of 1Cr18Ni9Ti Stainless Steel, J. Mater. Process. Technol., 2015, 215, p 142–150.

    Article  CAS  Google Scholar 

  10. H. Schleifenbaum, W. Meiners, K. Wissenbach, and C. Hinke, Individualized Production by Means of High Power Selective Laser Melting, CIRP J. Manuf. Sci. Technol., 2010, 2(3), p 161–169.

    Article  Google Scholar 

  11. X. Shi, S. Ma, C. Liu, C. Chen, Q. Wu, X. Chen, and J. Lu, Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V, Materials, 2016, 9(12), p 975.

    Article  PubMed  PubMed Central  Google Scholar 

  12. W. Zhang, W. Hou, L. Deike, and C.B. Arnold, Using a Dual-Laser System to Create Periodic Coalescence in Laser Powder Bed Fusion, Acta Mater., 2020, 201, p 14–22.

    Article  CAS  Google Scholar 

  13. P. Promoppatum, Dual-Laser Powder Bed Fusion Additive Manufacturing: Computational Study of the Effect of Process Strategies on Thermal and Residual Stress Formations, Int. J. Adv. Manuf. Technol., 2022, 121(1–2), p 1337–1351.

    Article  Google Scholar 

  14. M. Guo, D. Gu, L. Xi, L. Du, H. Zhang, and J. Zhang, Formation of Scanning Tracks during Selective Laser Melting (SLM) of Pure Tungsten Powder: Morphology, Geometric Features and Forming Mechanisms, Int. J. Refract. Met. Hard Mater., 2019, 79, p 37–46.

    Article  CAS  Google Scholar 

  15. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing, J. Mater. Process. Technol., 2014, 214(12), p 2915–2925.

    Article  Google Scholar 

  16. C. Tang, J.L. Tan, and C.H. Wong, A Numerical Investigation on the Physical Mechanisms of Single Track Defects in Selective Laser Melting, Int. J. Heat Mass Transf., 2018, 126, p 957–968.

    Article  CAS  Google Scholar 

  17. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, On the Formation of AlSi10Mg Single Tracks and Layers in Selective Laser Melting: Microstructure and Nano-Mechanical Properties, J. Mater. Process. Technol., 2016, 230, p 88–98.

    Article  CAS  Google Scholar 

  18. Y. Huang, T.G. Fleming, S.J. Clark, S. Marussi, K. Fezzaa, J. Thiyagalingam, C.L.A. Leung, and P.D. Lee, Keyhole Fluctuation and Pore Formation Mechanisms during Laser Powder Bed Fusion Additive Manufacturing, Nat. Commun., 2022, 13(1), p 1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Soylemez, High Deposition Rate Approach of Selective Laser Melting through Defocused Single Bead Experiments and Thermal Finite Element Analysis for Ti-6Al-4V, Addit. Manuf., 2020, 31, 100984.

    CAS  Google Scholar 

  20. C. Tenbrock, Influence of Keyhole and Conduction Mode Melting for Top-Hat Shaped Beam Profiles in Laser Powder Bed Fusion, J. Mater. Process. Technol., 2020 https://doi.org/10.1016/j.jmatprotec.2019.116514

    Article  Google Scholar 

  21. J. Metelkova, Y. Kinds, K. Kempen, C. De Formanoir, A. Witvrouw, and B. Van Hooreweder, On the Influence of Laser Defocusing in Selective Laser Melting of 316L, Addit. Manuf., 2018, 23, p 161–169.

    CAS  Google Scholar 

  22. R. Rai, J.W. Elmer, T.A. Palmer, and T. DebRoy, Heat Transfer and Fluid Flow during Keyhole Mode Laser Welding of Tantalum, Ti-6Al-4V, 304L Stainless Steel and Vanadium, J. Phys. Appl. Phys., 2007, 40(18), p 5753.

    Article  CAS  Google Scholar 

  23. S. Liu and H. Guo, Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy, Materials, 2020, 13(16), p 3632.

    Article  PubMed  PubMed Central  Google Scholar 

  24. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Vol 74, Aircraft Engineering and Aerospace Technology, Emerald Group Publishing Limited, 2002.

  25. Z. Gan, Universal Scaling Laws of Keyhole Stability and Porosity in 3D Printing of Metals, Nat. Commun., 2021 https://doi.org/10.1038/s41467-021-22704-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. V. Juechter, T. Scharowsky, R.F. Singer, and C. Körner, Processing Window and Evaporation Phenomena for Ti-6Al-4V Produced by Selective Electron Beam Melting, Acta Mater., 2014, 76, p 252–258.

    Article  CAS  Google Scholar 

  27. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A Study of the Microstructural Evolution during Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312.

    Article  CAS  Google Scholar 

  28. S.M. Kelly and S.L. Kampe, Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part II. Thermal Modeling, Metall. Mater. Trans. A, 2004, 35(6), p 1869–1879.

    Article  Google Scholar 

  29. X. Shi, S. Ma, C. Liu, Q. Wu, J. Lu, Y. Liu, and W. Shi, Selective Laser Melting-Wire Arc Additive Manufacturing Hybrid Fabrication of Ti-6Al-4V Alloy: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2017, 684, p 196–204.

    Article  CAS  Google Scholar 

  30. M. Simonelli, Y.Y. Tse, and C. Tuck, Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti-6Al-4V, Mater. Sci. Eng. A, 2014, 616, p 1–11.

    Article  CAS  Google Scholar 

  31. D. Gu, K. Lin, J. Ma, W. Chen, J. Huang, X. Sun, and M. Chu, Selective Laser Melting of Titanium Parts: Influence of Laser Process Parameters on Macro- and Microstructures and Tensile Property, Powder Technol., 2019, 342, p 371–379.

  32. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting, Prog. Addit. Manuf., 2017, 2(3), p 157–167.

    Article  Google Scholar 

  33. H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1–4, p 87–98.

    Google Scholar 

  34. S.M. Kelly and S.L. Kampe, Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I. Microstructural Characterization, Metall. Mater. Trans. A, 2004, 35(6), p 1861–1867.

    Article  Google Scholar 

  35. E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, Microstructure and Mechanical Behaviour of Ti-6Al-7Nb Alloy Produced by Selective Laser Melting, Mater Charact, 2011, 62(5), p 488–495.

    Article  CAS  Google Scholar 

  36. T. Sercombe, N. Jones, R. Day, and A. Kop, Heat Treatment of Ti-6Al-7Nb Components Produced by Selective Laser Melting, Rapid Prototyp. J., 2008, 14(5), p 300–304.

    Article  Google Scholar 

  37. R. Trivedi, V. Seetharaman, and M.A. Eshelman, The Effects of Interface Kinetics Anisotropy on the Growth Direction of Cellular Microstructures, Metall. Trans. A, 1991, 22(2), p 585–593.

    Article  Google Scholar 

  38. Y. Zhu, J. Li, X. Tian, H. Wang, and D. Liu, Microstructure and Mechanical Properties of Hybrid Fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy by Laser Additive Manufacturing, Mater. Sci. Eng. A, 2014, 607, p 427–434.

    Article  CAS  Google Scholar 

  39. J. Fu, H. Li, X. Song, and M.W. Fu, Multi-Scale Defects in Powder-Based Additively Manufactured Metals and Alloys, J. Mater. Sci. Technol., 2022, 122, p 165–199.

    Article  CAS  Google Scholar 

  40. F1472 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400), n.d., https://www.astm.org/f1472-20a.html. Accessed 5 June 2023

  41. B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties, J. Alloys Compd., 2012, 541, p 177–185.

    Article  CAS  Google Scholar 

  42. X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, and M. Liu, Effect of Heat Treatment on the Phase Transformation and Mechanical Properties of Ti6Al4V Fabricated by Selective Laser Melting, J. Alloys Compd., 2018, 764, p 1056–1071.

    Article  CAS  Google Scholar 

  43. Z. Liang, Z. Sun, W. Zhang, S. Wu, and H. Chang, The Effect of Heat Treatment on Microstructure Evolution and Tensile Properties of Selective Laser Melted Ti6Al4V Alloy, J. Alloys Compd., 2019, 782, p 1041–1048.

    Article  CAS  Google Scholar 

  44. W. Shi, Y. Liu, X. Shi, Y. Hou, P. Wang, and G. Song, Beam Diameter Dependence of Performance in Thick-Layer and High-Power Selective Laser Melting of Ti-6Al-4V, Materials, 2018, 11(7), p 1237.

    Article  PubMed  PubMed Central  Google Scholar 

  45. J.D. Madison and L.K. Aagesen, Quantitative Characterization of Porosity in Laser Welds of Stainless Steel, Scr. Mater., 2012, 67(9), p 783–786.

    Article  CAS  Google Scholar 

  46. B. Sagbas, G. Gencelli, and A. Sever, Effect of Process Parameters on Tribological Properties of Ti6Al4V Surfaces Manufactured by Selective Laser Melting, J. Mater. Eng. Perform., 2021, 30(7), p 4966–4973.

    Article  CAS  Google Scholar 

  47. A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar, Investigations on the Effect of Heating Temperature and Cooling Rate on Evolution of Microstructure in an α + β Titanium Alloy, J. Mater. Res., 2018, 33(8), p 946–957.

    Article  CAS  Google Scholar 

  48. M. Simonelli, Y.Y. Tse, and C. Tuck, Further Understanding on Ti-6Al-4V Selective Laser Melting Using Texture Analysis, Univ. Texas Austin, 2012 https://doi.org/10.26153/tsw/15367

    Article  Google Scholar 

  49. B. Zhou, J. Zhou, H. Li, and F. Lin, A Study of the Microstructures and Mechanical Properties of Ti6Al4V Fabricated by SLM under Vacuum, Mater. Sci. Eng. A, 2018, 724, p 1–10.

    Article  CAS  Google Scholar 

  50. J. Airao, H. Kishore, and C.K. Nirala, Measurement and Analysis of Tool Wear and Surface Characteristics in Micro Turning of SLM Ti6Al4V and Wrought Ti6Al4V, Measurement, 2023, 206, 112281.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Yunnan Provincial Science and Technology Major Project (202202AG050007), the National Natural Science Foundation of China (51961017), and the Yunnan Provincial Key Project of Basic Research (202101AS070017). Special thanks to the Center for Analysis and Testing of Kunming University of Science and Technology for instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, Z., Zhang, Z. et al. Role of Stable Keyhole Mode in the Formability, Microstructure, and Mechanical Properties of High Layer Thickness in Laser Powder Bed Fusion of Ti-6Al-4V Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09377-8

Keywords

Navigation